IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.01448.html
   My bibliography  Save this paper

Agency-Driven Labor Theory: A Framework for Understanding Human Work in the AI Age

Author

Listed:
  • Venkat Ram Reddy Ganuthula

Abstract

This paper introduces Agency-Driven Labor Theory as a new theoretical framework for understanding human work in AI-augmented environments. While traditional labor theories have focused primarily on task execution and labor time, ADLT proposes that human labor value is increasingly derived from agency - the capacity to make informed judgments, provide strategic direction, and design operational frameworks for AI systems. The paper presents a mathematical framework expressing labor value as a function of agency quality, direction effectiveness, and outcomes, providing a quantifiable approach to analyzing human value creation in AI-augmented workplaces. Drawing on recent work in organizational economics and knowledge worker productivity, ADLT explains how human workers create value by orchestrating complex systems that combine human and artificial intelligence. The theory has significant implications for job design, compensation structures, professional development, and labor market dynamics. Through applications across various sectors, the paper demonstrates how ADLT can guide organizations in managing the transition to AI-augmented operations while maximizing human value creation. The framework provides practical tools for policymakers and educational institutions as they prepare workers for a labor market where value creation increasingly centers on agency and direction rather than execution.

Suggested Citation

  • Venkat Ram Reddy Ganuthula, 2024. "Agency-Driven Labor Theory: A Framework for Understanding Human Work in the AI Age," Papers 2501.01448, arXiv.org.
  • Handle: RePEc:arx:papers:2501.01448
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.01448
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.01448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.