IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.01219.html
   My bibliography  Save this paper

Model of an Open, Decentralized Computational Network with Incentive-Based Load Balancing

Author

Listed:
  • German Rodikov

Abstract

This paper proposes a model that enables permissionless and decentralized networks for complex computations. We explore the integration and optimize load balancing in an open, decentralized computational network. Our model leverages economic incentives and reputation-based mechanisms to dynamically allocate tasks between operators and coprocessors. This approach eliminates the need for specialized hardware or software, thereby reducing operational costs and complexities. We present a mathematical model that enhances restaking processes in blockchain systems by enabling operators to delegate complex tasks to coprocessors. The model's effectiveness is demonstrated through experimental simulations, showcasing its ability to optimize reward distribution, enhance security, and improve operational efficiency. Our approach facilitates a more flexible and scalable network through the use of economic commitments, adaptable dynamic rating models, and a coprocessor load incentivization system. Supported by experimental simulations, the model demonstrates its capability to optimize resource allocation, enhance system resilience, and reduce operational risks. This ensures significant improvements in both security and cost-efficiency for the blockchain ecosystem.

Suggested Citation

  • German Rodikov, 2025. "Model of an Open, Decentralized Computational Network with Incentive-Based Load Balancing," Papers 2501.01219, arXiv.org.
  • Handle: RePEc:arx:papers:2501.01219
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.01219
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.01219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.