IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.00075.html
   My bibliography  Save this paper

Community detection by simulated bifurcation

Author

Listed:
  • Wei Li
  • Yi-Lun Du
  • Nan Su
  • Konrad Tywoniuk
  • Kyle Godbey
  • Horst Stocker

Abstract

Community detection, also known as graph partitioning, is a well-known NP-hard combinatorial optimization problem with applications in diverse fields such as complex network theory, transportation, and smart power grids. The problem's solution space grows drastically with the number of vertices and subgroups, making efficient algorithms crucial. In recent years, quantum computing has emerged as a promising approach to tackling NP-hard problems. This study explores the use of a quantum-inspired algorithm, Simulated Bifurcation (SB), for community detection. Modularity is employed as both the objective function and a metric to evaluate the solutions. The community detection problem is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem, enabling seamless integration with the SB algorithm. Experimental results demonstrate that SB effectively identifies community structures in benchmark networks such as Zachary's Karate Club and the IEEE 33-bus system. Remarkably, SB achieved the highest modularity, matching the performance of Fujitsu's Digital Annealer, while surpassing results obtained from two quantum machines, D-Wave and IBM. These findings highlight the potential of Simulated Bifurcation as a powerful tool for solving community detection problems.

Suggested Citation

  • Wei Li & Yi-Lun Du & Nan Su & Konrad Tywoniuk & Kyle Godbey & Horst Stocker, 2024. "Community detection by simulated bifurcation," Papers 2501.00075, arXiv.org.
  • Handle: RePEc:arx:papers:2501.00075
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.00075
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.00075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.