IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.20173.html
   My bibliography  Save this paper

Debiased Nonparametric Regression for Statistical Inference and Distributionally Robustness

Author

Listed:
  • Masahiro Kato

Abstract

This study proposes a debiasing method for smooth nonparametric estimators. While machine learning techniques such as random forests and neural networks have demonstrated strong predictive performance, their theoretical properties remain relatively underexplored. Specifically, many modern algorithms lack assurances of pointwise asymptotic normality and uniform convergence, which are critical for statistical inference and robustness under covariate shift and have been well-established for classical methods like Nadaraya-Watson regression. To address this, we introduce a model-free debiasing method that guarantees these properties for smooth estimators derived from any nonparametric regression approach. By adding a correction term that estimates the conditional expected residual of the original estimator, or equivalently, its estimation error, we obtain a debiased estimator with proven pointwise asymptotic normality, and uniform convergence. These properties enable statistical inference and enhance robustness to covariate shift, making the method broadly applicable to a wide range of nonparametric regression problems.

Suggested Citation

  • Masahiro Kato, 2024. "Debiased Nonparametric Regression for Statistical Inference and Distributionally Robustness," Papers 2412.20173, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2412.20173
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.20173
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.20173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.