IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.18563.html
   My bibliography  Save this paper

A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market

Author

Listed:
  • Gang Huang
  • Xiaohua Zhou
  • Qingyang Song

Abstract

Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.

Suggested Citation

  • Gang Huang & Xiaohua Zhou & Qingyang Song, 2024. "A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market," Papers 2412.18563, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2412.18563
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.18563
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    4. Zahra Pourahmadi & Dariush Fareed & Hamid Reza Mirzaei, 2024. "A Novel Stock Trading Model based on Reinforcement Learning and Technical Analysis," Annals of Data Science, Springer, vol. 11(5), pages 1653-1674, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    2. Daraio, Cinzia & Simar, Leopold, 2006. "A robust nonparametric approach to evaluate and explain the performance of mutual funds," European Journal of Operational Research, Elsevier, vol. 175(1), pages 516-542, November.
    3. Babalos, Vassilios & Caporale, Guglielmo Maria & Philippas, Nikolaos, 2012. "Efficiency evaluation of Greek equity funds," Research in International Business and Finance, Elsevier, vol. 26(2), pages 317-333.
    4. Tarnaud, Albane Christine & Leleu, Hervé, 2018. "Portfolio analysis with DEA: Prior to choosing a model," Omega, Elsevier, vol. 75(C), pages 57-76.
    5. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    6. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    7. Kerstens, Kristiaan & Mounir, Amine & de Woestyne, Ignace Van, 2011. "Non-parametric frontier estimates of mutual fund performance using C- and L-moments: Some specification tests," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1190-1201, May.
    8. Zhang, Linjia & Botti, Laurent & Petit, Sylvain, 2016. "Destination performance: Introducing the utility function in the mean-variance space," Tourism Management, Elsevier, vol. 52(C), pages 123-132.
    9. Cui, Tianxiang & Ding, Shusheng & Jin, Huan & Zhang, Yongmin, 2023. "Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach," Economic Modelling, Elsevier, vol. 119(C).
    10. Bougnol, M.-L. & Dulá, J.H. & Estellita Lins, M.P. & Moreira da Silva, A.C., 2010. "Enhancing standard performance practices with DEA," Omega, Elsevier, vol. 38(1-2), pages 33-45, February.
    11. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    12. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    13. Mohammad Reza TAVAKOLI BAGHDADABAD & Afsaneh NOORI HOUSHYAR, 2014. "Productivity and Efficiency Evaluation of US Mutual Funds," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 120-143, March.
    14. Edirisinghe, N.C.P. & Zhang, X., 2010. "Input/output selection in DEA under expert information, with application to financial markets," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1669-1678, December.
    15. Kerstens, Kristiaan & Mazza, Paolo & Ren, Tiantian & Van de Woestyne, Ignace, 2022. "Multi-Time and Multi-Moment Nonparametric Frontier-Based Fund Rating: Proposal and Buy-and-Hold Backtesting Strategy," Omega, Elsevier, vol. 113(C).
    16. Liu, Yong-Jun & Yang, Guo-Sen & Zhang, Wei-Guo, 2024. "A novel regret-rejoice cross-efficiency approach for energy stock portfolio optimization," Omega, Elsevier, vol. 126(C).
    17. Zhang, Yue-Jun & Chen, Ming-Ying, 2018. "Evaluating the dynamic performance of energy portfolios: Empirical evidence from the DEA directional distance function," European Journal of Operational Research, Elsevier, vol. 269(1), pages 64-78.
    18. Newton da Costa, Jr. & Marcus Lima & Edgar Lanzer & Ana Lopes, 2008. "DEA investment strategy in the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 13(2), pages 1-10.
    19. Edirisinghe, N.C.P. & Zhang, X., 2007. "Generalized DEA model of fundamental analysis and its application to portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3311-3335, November.
    20. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.18563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.