IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.18202.html
   My bibliography  Save this paper

Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms

Author

Listed:
  • Zhuohuan Hu
  • Richard Yu
  • Zizhou Zhang
  • Haoran Zheng
  • Qianying Liu
  • Yining Zhou

Abstract

This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.

Suggested Citation

  • Zhuohuan Hu & Richard Yu & Zizhou Zhang & Haoran Zheng & Qianying Liu & Yining Zhou, 2024. "Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms," Papers 2412.18202, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2412.18202
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.18202
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    2. Yong Xie & Dakuo Wang & Pin-Yu Chen & Jinjun Xiong & Sijia Liu & Sanmi Koyejo, 2022. "A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Predictions," Papers 2205.01094, arXiv.org, revised Jul 2022.
    3. Yizhao Hong, 2023. "Study on the Maximum Level of Disposable Plastic Product Waste," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    4. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    5. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    6. Muxin Jia & Ang Liu & Taro Narahara, 2024. "The Integration of Dual Evaluation and Minimum Spanning Tree Clustering to Support Decision-Making in Territorial Spatial Planning," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    7. Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2022. "Explainable artificial intelligence for crypto asset allocation," Finance Research Letters, Elsevier, vol. 47(PB).
    8. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    9. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    2. Yichen Luo & Yebo Feng & Jiahua Xu & Paolo Tasca & Yang Liu, 2025. "LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management," Papers 2501.00826, arXiv.org, revised Jan 2025.
    3. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    4. Sakkas, Athanasios & Urquhart, Andrew, 2024. "Blockchain factors," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 94(C).
    5. Yousaf, Imran & Yarovaya, Larisa, 2022. "Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets," Finance Research Letters, Elsevier, vol. 50(C).
    6. Wei Zhang & Yi Li, 2023. "Liquidity risk and expected cryptocurrency returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 472-492, January.
    7. Liebi, Luca J., 2022. "Is there a value premium in cryptoasset markets?," Economic Modelling, Elsevier, vol. 109(C).
    8. Hashem A. AlNemer & Besma Hkiri & Muhammed Asif Khan, 2021. "Time-Varying Nexus between Investor Sentiment and Cryptocurrency Market: New Insights from a Wavelet Coherence Framework," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    9. Jacopo Fior & Luca Cagliero & Paolo Garza, 2022. "Leveraging Explainable AI to Support Cryptocurrency Investors," Future Internet, MDPI, vol. 14(9), pages 1-19, August.
    10. Nuray Tosunoğlu & Hilal Abacı & Gizem Ateş & Neslihan Saygılı Akkaya, 2023. "Artificial neural network analysis of the day of the week anomaly in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    11. Pattnaik, Debidutta & Hassan, M. Kabir & Dsouza, Arun & Tiwari, Aviral & Devji, Shridev, 2023. "Ex-post facto analysis of cryptocurrency literature over a decade using bibliometric technique," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    12. Sila, Jan & Kocenda, Evzen & Kristoufek, Ladislav & Kukacka, Jiri, 2024. "Good vs. bad volatility in major cryptocurrencies: The dichotomy and drivers of connectedness," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 96(C).
    13. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    14. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    16. Fallah, Mir Feiz & Pourmansouri, Rezvan & Ahmadpour, Bahador, 2024. "Presenting a new deep learning-based method with the incorporation of error effects to predict certain cryptocurrencies," International Review of Financial Analysis, Elsevier, vol. 95(PC).
    17. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    18. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    19. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
    20. Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.18202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.