IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.17753.html
   My bibliography  Save this paper

Minimax Optimal Simple Regret in Two-Armed Best-Arm Identification

Author

Listed:
  • Masahiro Kato

Abstract

This study investigates an asymptotically minimax optimal algorithm in the two-armed fixed-budget best-arm identification (BAI) problem. Given two treatment arms, the objective is to identify the arm with the highest expected outcome through an adaptive experiment. We focus on the Neyman allocation, where treatment arms are allocated following the ratio of their outcome standard deviations. Our primary contribution is to prove the minimax optimality of the Neyman allocation for the simple regret, defined as the difference between the expected outcomes of the true best arm and the estimated best arm. Specifically, we first derive a minimax lower bound for the expected simple regret, which characterizes the worst-case performance achievable under the location-shift distributions, including Gaussian distributions. We then show that the simple regret of the Neyman allocation asymptotically matches this lower bound, including the constant term, not just the rate in terms of the sample size, under the worst-case distribution. Notably, our optimality result holds without imposing locality restrictions on the distribution, such as the local asymptotic normality. Furthermore, we demonstrate that the Neyman allocation reduces to the uniform allocation, i.e., the standard randomized controlled trial, under Bernoulli distributions.

Suggested Citation

  • Masahiro Kato, 2024. "Minimax Optimal Simple Regret in Two-Armed Best-Arm Identification," Papers 2412.17753, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2412.17753
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.17753
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.17753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.