IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.16655.html
   My bibliography  Save this paper

Direct Inversion for the Squared Bessel Process and Applications

Author

Listed:
  • Simon J. A. Malham
  • Anke Wiese
  • Yifan Xu

Abstract

In this paper we derive a new direct inversion method to simulate squared Bessel processes. Since the transition probability of these processes can be represented by a non-central chi-square distribution, we construct an efficient and accurate algorithm to simulate non-central chi-square variables. In this method, the dimension of the squared Bessel process, equivalently the degrees of freedom of the chi-square distribution, is treated as a variable. We therefore use a two-dimensional Chebyshev expansion to approximate the inverse function of the central chi-square distribution with one variable being the degrees of freedom. The method is accurate and efficient for any value of degrees of freedom including the computationally challenging case of small values. One advantage of the method is that noncentral chi-square samples can be generated for a whole range of values of degrees of freedom using the same Chebyshev coefficients. The squared Bessel process is a building block for the well-known Cox-Ingersoll-Ross (CIR) processes, which can be generated from squared Bessel processes through time change and linear transformation. Our direct inversion method thus allows the efficient and accurate simulation of these processes, which are used as models in a wide variety of applications.

Suggested Citation

  • Simon J. A. Malham & Anke Wiese & Yifan Xu, 2024. "Direct Inversion for the Squared Bessel Process and Applications," Papers 2412.16655, arXiv.org.
  • Handle: RePEc:arx:papers:2412.16655
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.16655
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.16655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.