IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.11462.html
   My bibliography  Save this paper

S&P 500 Trend Prediction

Author

Listed:
  • Shasha Yu
  • Qinchen Zhang
  • Yuwei Zhao

Abstract

This project aims to predict short-term and long-term upward trends in the S&P 500 index using machine learning models and feature engineering based on the "101 Formulaic Alphas" methodology. The study employed multiple models, including Logistic Regression, Decision Trees, Random Forests, Neural Networks, K-Nearest Neighbors (KNN), and XGBoost, to identify market trends from historical stock data collected from Yahoo! Finance. Data preprocessing involved handling missing values, standardization, and iterative feature selection to ensure relevance and variability. For short-term predictions, KNN emerged as the most effective model, delivering robust performance with high recall for upward trends, while for long-term forecasts, XGBoost demonstrated the highest accuracy and AUC scores after hyperparameter tuning and class imbalance adjustments using SMOTE. Feature importance analysis highlighted the dominance of momentum-based and volume-related indicators in driving predictions. However, models exhibited limitations such as overfitting and low recall for positive market movements, particularly in imbalanced datasets. The study concludes that KNN is ideal for short-term alerts, whereas XGBoost is better suited for long-term trend forecasting. Future enhancements could include advanced architectures like Long Short-Term Memory (LSTM) networks and further feature refinement to improve precision and generalizability. These findings contribute to developing reliable machine learning tools for market trend prediction and investment decision-making.

Suggested Citation

  • Shasha Yu & Qinchen Zhang & Yuwei Zhao, 2024. "S&P 500 Trend Prediction," Papers 2412.11462, arXiv.org.
  • Handle: RePEc:arx:papers:2412.11462
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.11462
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.11462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.