IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.10592.html
   My bibliography  Save this paper

Self-Exciting Random Evolutions (SEREs) and their Applications

Author

Listed:
  • Anatoliy Swishchuk

Abstract

This paper is devoted to the study of a new so-called self-exciting random evolutions (SEREs) and their applications. We introduce a new random process $x(t)$ such that it is based on a superposition of a Markov chain $x_n$ and a Hawkes process $N(t)$; i.e., $x(t) := x_{N(t)}$. We call this process self-walking imbedded semi-Hawkes process (Swish Process or SwishP). Then the self-exciting REs (SEREs) can be constructed in similar way as, e.g., semi-Markov REs, but instead of semi-Markov process $x(t)$ we have SwishP. We give classifications and examples of self-exciting REs (SEREs). Then we consider limit theorems for SEREs such as averaging, diffusion approximation, normal deviations and rates of convergence of SEREs. Applications of SEREs are devoted to the so-called self-exciting traffic/transport process and self-exciting summation on a Markov chain, which are examples of continuous and discrete SERE, respectively. From these processes we can construct many other self-exciting processes, e.g., such as impulse traffic/transport process, self-exciting risk process, etc. We present averaged, diffusion and normal deviated self-exciting processes. Rates of convergence in these cases are presented as well. The originality and novelty of the paper associated with new features of REs and their many applications, namely, self-exciting and clustering effects.

Suggested Citation

  • Anatoliy Swishchuk, 2024. "Self-Exciting Random Evolutions (SEREs) and their Applications," Papers 2412.10592, arXiv.org.
  • Handle: RePEc:arx:papers:2412.10592
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.10592
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-Based Models," Risks, MDPI, vol. 9(6), pages 1-13, June.
    2. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    3. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    4. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-based Models," Papers 2104.02694, arXiv.org, revised May 2021.
    5. Anatoliy Swishchuk & Tyler Hofmeister & Katharina Cera & Julia Schmidt, 2017. "General Semi-Markov Model For Limit Order Books," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-21, May.
    6. Anatoliy Swishchuk, 2017. "Risk Model Based on General Compound Hawkes Process," Papers 1706.09038, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    2. Myles Sjogren & Timothy DeLise, 2021. "General Compound Hawkes Processes for Mid-Price Prediction," Papers 2110.07075, arXiv.org.
    3. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    4. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
    5. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    6. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Papers 2008.00124, arXiv.org.
    7. Anatoliy Swishchuk, 2017. "Risk Model Based on General Compound Hawkes Process," Papers 1706.09038, arXiv.org.
    8. Anatoliy Swishchuk, 2021. "Modelling of Limit Order Books by General Compound Hawkes Processes with Implementations," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 399-428, March.
    9. Ana Roldan Contreras & Anatoliy Swishchuk, 2022. "Optimal Liquidation, Acquisition and Market Making Problems in HFT under Hawkes Models for LOB," Risks, MDPI, vol. 10(8), pages 1-32, August.
    10. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    11. Qi Guo & Anatoliy Swishchuk & Bruno R'emillard, 2022. "Multivariate Hawkes-based Models in LOB: European, Spread and Basket Option Pricing," Papers 2209.07621, arXiv.org.
    12. Anatoliy Swishchuk, 2020. "Stochastic Modelling of Big Data in Finance," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1613-1630, December.
    13. Souhail Chebbi & Senda Ounaies, 2023. "Optimal Investment of Merton Model for Multiple Investors with Frictions," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    14. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    15. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-based Models," Papers 2104.02694, arXiv.org, revised May 2021.
    16. Qiyue He & Anatoliy Swishchuk, 2019. "Quantitative and Comparative Analyses of Limit Order Books with General Compound Hawkes Processes," Risks, MDPI, vol. 7(4), pages 1-21, November.
    17. Riccardo De Blasis, 2023. "Weighted-indexed semi-Markov model: calibration and application to financial modeling," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
    18. Luca Lalor & Anatoliy Swishchuk, 2024. "Algorithmic and High-Frequency Trading Problems for Semi-Markov and Hawkes Jump-Diffusion Models," Papers 2409.12776, arXiv.org.
    19. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    20. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.10592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.