IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.07352.html
   My bibliography  Save this paper

Inference after discretizing unobserved heterogeneity

Author

Listed:
  • Jad Beyhum
  • Martin Mugnier

Abstract

We consider a linear panel data model with nonseparable two-way unobserved heterogeneity corresponding to a linear version of the model studied in Bonhomme et al. (2022). We show that inference is possible in this setting using a straightforward two-step estimation procedure inspired by existing discretization approaches. In the first step, we construct a discrete approximation of the unobserved heterogeneity by (k-means) clustering observations separately across the individual ($i$) and time ($t$) dimensions. In the second step, we estimate a linear model with two-way group fixed effects specific to each cluster. Our approach shares similarities with methods from the double machine learning literature, as the underlying moment conditions exhibit the same type of bias-reducing properties. We provide a theoretical analysis of a cross-fitted version of our estimator, establishing its asymptotic normality at parametric rate under the condition $\max(N,T)=o(\min(N,T)^3)$. Simulation studies demonstrate that our methodology achieves excellent finite-sample performance, even when $T$ is negligible with respect to $N$.

Suggested Citation

  • Jad Beyhum & Martin Mugnier, 2024. "Inference after discretizing unobserved heterogeneity," Papers 2412.07352, arXiv.org.
  • Handle: RePEc:arx:papers:2412.07352
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.07352
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengchun Shi & Jin Zhu & Shen Ye & Shikai Luo & Hongtu Zhu & Rui Song, 2024. "Off-Policy Confidence Interval Estimation with Confounded Markov Decision Process," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 273-284, January.
    2. Martin Mugnier, 2022. "A Simple and Computationally Trivial Estimator for Grouped Fixed Effects Models," Papers 2203.08879, arXiv.org, revised Sep 2024.
    3. Jad Beyhum & Éric Gautier, 2023. "Factor and Factor Loading Augmented Estimators for Panel Regression With Possibly Nonstrong Factors," Post-Print hal-04473333, HAL.
    4. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    8. Oliver Dukes & Stijn Vansteelandt, 2021. "Inference for treatment effect parameters in potentially misspecified high-dimensional models [Approximate residual balancing: Debiased inference of average treatment effects in high dimensions]," Biometrika, Biometrika Trust, vol. 108(2), pages 321-334.
    9. Stijn Vansteelandt & Oliver Dukes & Kelly Van Lancker & Torben Martinussen, 2024. "Assumption-Lean Cox Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 475-484, January.
    10. Greenaway-McGrevy, Ryan & Han, Chirok & Sul, Donggyu, 2012. "Asymptotic distribution of factor augmented estimators for panel regression," Journal of Econometrics, Elsevier, vol. 169(1), pages 48-53.
    11. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    12. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    13. Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2022. "Discretizing Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 90(2), pages 625-643, March.
    14. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    15. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    16. Yuyao Wang & Andrew Ying & Ronghui Xu, 2024. "Doubly robust estimation under covariate-induced dependent left truncation," Biometrika, Biometrika Trust, vol. 111(3), pages 789-808.
    17. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    18. Westerlund, Joakim & Urbain, Jean-Pierre, 2015. "Cross-sectional averages versus principal components," Journal of Econometrics, Elsevier, vol. 185(2), pages 372-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jad Beyhum & Martin Mugnier, 2024. "Inference after discretizing unobserved heterogeneity," CeMMAP working papers 29/24, Institute for Fiscal Studies.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Kazuhiko Hayakawa & Shuichi Nagata & Takashi Yamagata, 2018. "A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models with interactive effects," ISER Discussion Paper 1037, Institute of Social and Economic Research, Osaka University.
    4. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    5. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    6. Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2023. "Specification testing with grouped fixed effects," Papers 2310.01950, arXiv.org.
    7. Jad Beyhum & Eric Gautier, 2020. "Factor and factor loading augmented estimators for panel regression," Working Papers hal-02957008, HAL.
    8. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    9. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    10. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    11. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    12. Simplice A. Asongu & Samba Diop, 2022. "Resource Rents and Economic Growth: Governance and Infrastructure Thresholds," Working Papers of the African Governance and Development Institute. 22/072, African Governance and Development Institute..
    13. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    14. Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015. "Specification test for panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
    15. Simplice A. Asongu & Samba Diop & Ekene ThankGod Emeka & Amarachi O. Ogbonna, 2024. "The role of governance and infrastructure in moderating the effect of resource rents on economic growth," Working Papers of the African Governance and Development Institute. 24/027, African Governance and Development Institute..
    16. Guowei Cui & Kazuhiko Hayakawa & Shuichi Nagata & Takashi Yamagata, 2018. "A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models with interactive effects," ISER Discussion Paper 1037r, Institute of Social and Economic Research, Osaka University, revised Jun 2019.
    17. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    18. Chen, Mingjing & Yan, Jingzhou, 2019. "Unbiased CCE estimator for Interactive Fixed Effects panels," Economics Letters, Elsevier, vol. 175(C), pages 1-4.
    19. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    20. Simplice A. Asongu & Voxi H. S. Amavilah & Antonio R. Andres, 2019. "Business Dynamics, Knowledge Economy, and the Economic Performance of African Countries," Research Africa Network Working Papers 19/004, Research Africa Network (RAN).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.07352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.