Author
Abstract
This paper investigates the identification and inference of treatment effects in randomized controlled trials with social interactions. Two key network features characterize the setting and introduce endogeneity: (1) latent variables may affect both network formation and outcomes, and (2) the intervention may alter network structure, mediating treatment effects. I make three contributions. First, I define parameters within a post-treatment network framework, distinguishing direct effects of treatment from indirect effects mediated through changes in network structure. I provide a causal interpretation of the coefficients in a linear outcome model. For estimation and inference, I focus on a specific form of peer effects, represented by the fraction of treated friends. Second, in the absence of endogeneity, I establish the consistency and asymptotic normality of ordinary least squares estimators. Third, if endogeneity is present, I propose addressing it through shift-share instrumental variables, demonstrating the consistency and asymptotic normality of instrumental variable estimators in relatively sparse networks. For denser networks, I propose a denoised estimator based on eigendecomposition to restore consistency. Finally, I revisit Prina (2015) as an empirical illustration, demonstrating that treatment can influence outcomes both directly and through network structure changes.
Suggested Citation
Mengsi Gao, 2024.
"Endogenous Interference in Randomized Experiments,"
Papers
2412.02183, arXiv.org.
Handle:
RePEc:arx:papers:2412.02183
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.02183. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.