IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.13792.html
   My bibliography  Save this paper

Multiscale Markowitz

Author

Listed:
  • Revant Nayar
  • Raphael Douady

Abstract

Traditional Markowitz portfolio optimization constrains daily portfolio variance to a target value, optimising returns, Sharpe or variance within this constraint. However, this approach overlooks the relationship between variance at different time scales, typically described by $\sigma(\Delta t) \propto (\Delta t)^{H}$ where $H$ is the Hurst exponent, most of the time assumed to be \(\frac{1}{2}\). This paper introduces a multifrequency optimization framework that allows investors to specify target portfolio variance across a range of frequencies, characterized by a target Hurst exponent $H_{target}$, or optimize the portfolio at multiple time scales. By incorporating this scaling behavior, we enable a more nuanced and comprehensive risk management strategy that aligns with investor preferences at various time scales. This approach effectively manages portfolio risk across multiple frequencies and adapts to different market conditions, providing a robust tool for dynamic asset allocation. This overcomes some of the traditional limitations of Markowitz, when it comes to dealing with crashes, regime changes, volatility clustering or multifractality in markets. We illustrate this concept with a toy example and discuss the practical implementation for assets with varying scaling behaviors.

Suggested Citation

  • Revant Nayar & Raphael Douady, 2024. "Multiscale Markowitz," Papers 2411.13792, arXiv.org.
  • Handle: RePEc:arx:papers:2411.13792
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.13792
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    2. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    3. Shih-Ping Feng, 2011. "The Liquidity Effect In Option Pricing: An Empirical Analysis," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(2), pages 35-43.
    4. Chatrath, Arjun & Christie-David, Rohan A. & Miao, Hong & Ramchander, Sanjay, 2015. "Short-term options: Clienteles, market segmentation, and event trading," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 237-250.
    5. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    6. Feng, Shih-Ping & Hung, Mao-Wei & Wang, Yaw-Huei, 2016. "The importance of stock liquidity on option pricing," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 457-467.
    7. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    8. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    9. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    10. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    11. Lepori, Gabriele M., 2015. "Investor mood and demand for stocks: Evidence from popular TV series finales," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 33-47.
    12. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    13. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    14. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    15. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    16. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    17. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    18. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    19. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    20. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.13792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.