IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.11059.html
   My bibliography  Save this paper

Financial News-Driven LLM Reinforcement Learning for Portfolio Management

Author

Listed:
  • Ananya Unnikrishnan

Abstract

Reinforcement learning (RL) has emerged as a transformative approach for financial trading, enabling dynamic strategy optimization in complex markets. This study explores the integration of sentiment analysis, derived from large language models (LLMs), into RL frameworks to enhance trading performance. Experiments were conducted on single-stock trading with Apple Inc. (AAPL) and portfolio trading with the ING Corporate Leaders Trust Series B (LEXCX). The sentiment-enhanced RL models demonstrated superior net worth and cumulative profit compared to RL models without sentiment and, in the portfolio experiment, outperformed the actual LEXCX portfolio's buy-and-hold strategy. These results highlight the potential of incorporating qualitative market signals to improve decision-making, bridging the gap between quantitative and qualitative approaches in financial trading.

Suggested Citation

  • Ananya Unnikrishnan, 2024. "Financial News-Driven LLM Reinforcement Learning for Portfolio Management," Papers 2411.11059, arXiv.org.
  • Handle: RePEc:arx:papers:2411.11059
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.11059
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.11059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.