IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.06566.html
   My bibliography  Save this paper

A Fully Analog Pipeline for Portfolio Optimization

Author

Listed:
  • James S. Cummins
  • Natalia G. Berloff

Abstract

Portfolio optimization is a ubiquitous problem in financial mathematics that relies on accurate estimates of covariance matrices for asset returns. However, estimates of pairwise covariance could be better and calculating time-sensitive optimal portfolios is energy-intensive for digital computers. We present an energy-efficient, fast, and fully analog pipeline for solving portfolio optimization problems that overcomes these limitations. The analog paradigm leverages the fundamental principles of physics to recover accurate optimal portfolios in a two-step process. Firstly, we utilize equilibrium propagation, an analog alternative to backpropagation, to train linear autoencoder neural networks to calculate low-rank covariance matrices. Then, analog continuous Hopfield networks output the minimum variance portfolio for a given desired expected return. The entire efficient frontier may then be recovered, and an optimal portfolio selected based on risk appetite.

Suggested Citation

  • James S. Cummins & Natalia G. Berloff, 2024. "A Fully Analog Pipeline for Portfolio Optimization," Papers 2411.06566, arXiv.org.
  • Handle: RePEc:arx:papers:2411.06566
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.06566
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.06566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.