Author
Listed:
- Dawei Cheng
- Yao Zou
- Sheng Xiang
- Changjun Jiang
Abstract
The landscape of financial transactions has grown increasingly complex due to the expansion of global economic integration and advancements in information technology. This complexity poses greater challenges in detecting and managing financial fraud. This review explores the role of Graph Neural Networks (GNNs) in addressing these challenges by proposing a unified framework that categorizes existing GNN methodologies applied to financial fraud detection. Specifically, by examining a series of detailed research questions, this review delves into the suitability of GNNs for financial fraud detection, their deployment in real-world scenarios, and the design considerations that enhance their effectiveness. This review reveals that GNNs are exceptionally adept at capturing complex relational patterns and dynamics within financial networks, significantly outperforming traditional fraud detection methods. Unlike previous surveys that often overlook the specific potentials of GNNs or address them only superficially, our review provides a comprehensive, structured analysis, distinctly focusing on the multifaceted applications and deployments of GNNs in financial fraud detection. This review not only highlights the potential of GNNs to improve fraud detection mechanisms but also identifies current gaps and outlines future research directions to enhance their deployment in financial systems. Through a structured review of over 100 studies, this review paper contributes to the understanding of GNN applications in financial fraud detection, offering insights into their adaptability and potential integration strategies.
Suggested Citation
Dawei Cheng & Yao Zou & Sheng Xiang & Changjun Jiang, 2024.
"Graph Neural Networks for Financial Fraud Detection: A Review,"
Papers
2411.05815, arXiv.org, revised Nov 2024.
Handle:
RePEc:arx:papers:2411.05815
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.05815. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.