IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.05790.html
   My bibliography  Save this paper

Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction

Author

Listed:
  • Jue Xiao
  • Tingting Deng
  • Shuochen Bi

Abstract

In recent fast-paced financial markets, investors constantly seek ways to gain an edge and make informed decisions. Although achieving perfect accuracy in stock price predictions remains elusive, artificial intelligence (AI) advancements have significantly enhanced our ability to analyze historical data and identify potential trends. This paper takes AI driven stock price trend prediction as the core research, makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models. The analysis is more consistent with the model of stock trend prediction, and the experimental results show that the accuracy of the LSTM model is 94%. These methods ultimately allow investors to make more informed decisions and gain a clearer insight into market behaviors.

Suggested Citation

  • Jue Xiao & Tingting Deng & Shuochen Bi, 2024. "Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction," Papers 2411.05790, arXiv.org.
  • Handle: RePEc:arx:papers:2411.05790
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.05790
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.05790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.