IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.18261.html
   My bibliography  Save this paper

Detecting Spatial Outliers: the Role of the Local Influence Function

Author

Listed:
  • Giuseppe Arbia
  • Vincenzo Nardelli

Abstract

In the analysis of large spatial datasets, identifying and treating spatial outliers is essential for accurately interpreting geographical phenomena. While spatial correlation measures, particularly Local Indicators of Spatial Association (LISA), are widely used to detect spatial patterns, the presence of abnormal observations frequently distorts the landscape and conceals critical spatial relationships. These outliers can significantly impact analysis due to the inherent spatial dependencies present in the data. Traditional influence function (IF) methodologies, commonly used in statistical analysis to measure the impact of individual observations, are not directly applicable in the spatial context because the influence of an observation is determined not only by its own value but also by its spatial location, its connections with neighboring regions, and the values of those neighboring observations. In this paper, we introduce a local version of the influence function (LIF) that accounts for these spatial dependencies. Through the analysis of both simulated and real-world datasets, we demonstrate how the LIF provides a more nuanced and accurate detection of spatial outliers compared to traditional LISA measures and local impact assessments, improving our understanding of spatial patterns.

Suggested Citation

  • Giuseppe Arbia & Vincenzo Nardelli, 2024. "Detecting Spatial Outliers: the Role of the Local Influence Function," Papers 2410.18261, arXiv.org.
  • Handle: RePEc:arx:papers:2410.18261
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.18261
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Yang, Cynthia Fan, 2020. "Econometric analysis of production networks with dominant units," Journal of Econometrics, Elsevier, vol. 219(2), pages 507-541.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van de Leur, Michiel C.W. & Lucas, André & Seeger, Norman J., 2017. "Network, market, and book-based systemic risk rankings," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 84-90.
    2. Tan, Xiujie & Yan, Yaxue & Dong, Yuyang, 2022. "Peer effect in green credit induced green innovation: An empirical study from China's Green Credit Guidelines," Resources Policy, Elsevier, vol. 76(C).
    3. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    4. Dungey, Mardi & Harvey, John & Volkov, Vladimir, 2019. "The changing international network of sovereign debt and financial institutions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 60(C), pages 149-168.
    5. Celani, Alessandro & Cerchiello, Paola & Pagnottoni, Paolo, 2024. "The topological structure of panel variance decomposition networks," Journal of Financial Stability, Elsevier, vol. 71(C).
    6. Frohm, Erik & Gunnella, Vanessa, 2017. "Sectoral interlinkages in global value chains: spillovers and network effects," Working Paper Series 2064, European Central Bank.
    7. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    8. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt dynamics in Europe: A Network General Equilibrium GVAR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 175-202.
    9. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    10. Saman Banafti & Tae-Hwy Lee, 2022. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Papers 2201.06605, arXiv.org, revised Sep 2023.
    11. Imbs, Jean & Pauwels, Laurent, 2019. "Fundamental Moments," Working Papers BAWP-2019-06, University of Sydney Business School, Discipline of Business Analytics.
    12. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    13. Mardi Dungey & John Harvey & Pierre Siklos & Vladimir Volkov, 2017. "Signed spillover effects building on historical decompositions," CAMA Working Papers 2017-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Glass, Anthony J. & Kenjegalieva, Karligash & Douch, Mustapha, 2020. "Uncovering spatial productivity centers using asymmetric bidirectional spillovers," European Journal of Operational Research, Elsevier, vol. 285(2), pages 767-788.
    15. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    16. George Kapetanios & M. Hashem Pesaran & Simon Reese, 2018. "A Residual-based Threshold Method for Detection of Units that are Too Big to Fail in Large Factor Models," CESifo Working Paper Series 7401, CESifo.
    17. Gunnella, Vanessa & Al-Haschimi, Alexander & Benkovskis, Konstantins & Chiacchio, Francesco & de Soyres, François & Di Lupidio, Benedetta & Fidora, Michael & Franco-Bedoya, Sebastian & Frohm, Erik & G, 2019. "The impact of global value chains on the euro area economy," Occasional Paper Series 221, European Central Bank.
    18. Dragomirescu-Gaina, Catalin & Elia, Leandro, 2021. "Technology shocks and sectoral labour market spill-overs," Economics Letters, Elsevier, vol. 201(C).
    19. Lu, Yunzhi & Li, Jie & Yang, Haisheng, 2023. "Time-varying impacts of monetary policy uncertainty on China's housing market," Economic Modelling, Elsevier, vol. 118(C).
    20. Gao, Jiti & Linton, Oliver & Peng, Bin, 2020. "Inference On A Semiparametric Model With Global Power Law And Local Nonparametric Trends," Econometric Theory, Cambridge University Press, vol. 36(2), pages 223-249, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.18261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.