IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.15726.html
   My bibliography  Save this paper

Reducing annotator bias by belief elicitation

Author

Listed:
  • Terne Sasha Thorn Jakobsen
  • Andreas Bjerre-Nielsen
  • Robert Bohm

Abstract

Crowdsourced annotations of data play a substantial role in the development of Artificial Intelligence (AI). It is broadly recognised that annotations of text data can contain annotator bias, where systematic disagreement in annotations can be traced back to differences in the annotators' backgrounds. Being unaware of such annotator bias can lead to representational bias against minority group perspectives and therefore several methods have been proposed for recognising bias or preserving perspectives. These methods typically require either a substantial number of annotators or annotations per data instance. In this study, we propose a simple method for handling bias in annotations without requirements on the number of annotators or instances. Instead, we ask annotators about their beliefs of other annotators' judgements of an instance, under the hypothesis that these beliefs may provide more representative and less biased labels than judgements. The method was examined in two controlled, survey-based experiments involving Democrats and Republicans (n=1,590) asked to judge statements as arguments and then report beliefs about others' judgements. The results indicate that bias, defined as systematic differences between the two groups of annotators, is consistently reduced when asking for beliefs instead of judgements. Our proposed method therefore has the potential to reduce the risk of annotator bias, thereby improving the generalisability of AI systems and preventing harm to unrepresented socio-demographic groups, and we highlight the need for further studies of this potential in other tasks and downstream applications.

Suggested Citation

  • Terne Sasha Thorn Jakobsen & Andreas Bjerre-Nielsen & Robert Bohm, 2024. "Reducing annotator bias by belief elicitation," Papers 2410.15726, arXiv.org.
  • Handle: RePEc:arx:papers:2410.15726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.15726
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:judgdm:v:10:y:2015:i:5:p:456-468 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.15726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.