IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.15238.html
   My bibliography  Save this paper

Economic Anthropology in the Era of Generative Artificial Intelligence

Author

Listed:
  • Zachary Sheldon
  • Peeyush Kumar

Abstract

This paper explores the intersection of economic anthropology and generative artificial intelligence (GenAI). It examines how large language models (LLMs) can simulate human decision-making and the inductive biases present in AI research. The study introduces two AI models: C.A.L.L.O.N. (Conventionally Average Late Liberal ONtology) and M.A.U.S.S. (More Accurate Understanding of Society and its Symbols). The former is trained on standard data, while the latter is adapted with anthropological knowledge. The research highlights how anthropological training can enhance LLMs' ability to recognize diverse economic systems and concepts. The findings suggest that integrating economic anthropology with AI can provide a more pluralistic understanding of economics and improve the sustainability of non-market economic systems.

Suggested Citation

  • Zachary Sheldon & Peeyush Kumar, 2024. "Economic Anthropology in the Era of Generative Artificial Intelligence," Papers 2410.15238, arXiv.org.
  • Handle: RePEc:arx:papers:2410.15238
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.15238
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.15238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.