IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.12824.html
   My bibliography  Save this paper

Optimization of Actuarial Neural Networks with Response Surface Methodology

Author

Listed:
  • Belguutei Ariuntugs
  • Kehelwala Dewage Gayan Madurang

Abstract

In the data-driven world of actuarial science, machine learning (ML) plays a crucial role in predictive modeling, enhancing risk assessment and pricing strategies. Neural networks, specifically combined actuarial neural networks (CANN), are vital for tasks such as mortality forecasting and pricing. However, optimizing hyperparameters (e.g., learning rates, layers) is essential for resource efficiency. This study utilizes a factorial design and response surface methodology (RSM) to optimize CANN performance. RSM effectively explores the hyperparameter space and captures potential curvature, outperforming traditional grid search. Our results show accurate performance predictions, identifying critical hyperparameters. By dropping statistically insignificant hyperparameters, we reduced runs from 288 to 188, with negligible loss in accuracy, achieving near-optimal out-of-sample Poisson deviance loss.

Suggested Citation

  • Belguutei Ariuntugs & Kehelwala Dewage Gayan Madurang, 2024. "Optimization of Actuarial Neural Networks with Response Surface Methodology," Papers 2410.12824, arXiv.org.
  • Handle: RePEc:arx:papers:2410.12824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.12824
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.12824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.