IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.09065.html
   My bibliography  Save this paper

Automatic Pricing and Replenishment Strategies for Vegetable Products Based on Data Analysis and Nonlinear Programming

Author

Listed:
  • Mingpu Ma

Abstract

In the field of fresh produce retail, vegetables generally have a relatively limited shelf life, and their quality deteriorates with time. Most vegetable varieties, if not sold on the day of delivery, become difficult to sell the following day. Therefore, retailers usually perform daily quantitative replenishment based on historical sales data and demand conditions. Vegetable pricing typically uses a "cost-plus pricing" method, with retailers often discounting products affected by transportation loss and quality decline. In this context, reliable market demand analysis is crucial as it directly impacts replenishment and pricing decisions. Given the limited retail space, a rational sales mix becomes essential. This paper first uses data analysis and visualization techniques to examine the distribution patterns and interrelationships of vegetable sales quantities by category and individual item, based on provided data on vegetable types, sales records, wholesale prices, and recent loss rates. Next, it constructs a functional relationship between total sales volume and cost-plus pricing for vegetable categories, forecasts future wholesale prices using the ARIMA model, and establishes a sales profit function and constraints. A nonlinear programming model is then developed and solved to provide daily replenishment quantities and pricing strategies for each vegetable category for the upcoming week. Further, we optimize the profit function and constraints based on the actual sales conditions and requirements, providing replenishment quantities and pricing strategies for individual items on July 1 to maximize retail profit. Finally, to better formulate replenishment and pricing decisions for vegetable products, we discuss and forecast the data that retailers need to collect and analyses how the collected data can be applied to the above issues.

Suggested Citation

  • Mingpu Ma, 2024. "Automatic Pricing and Replenishment Strategies for Vegetable Products Based on Data Analysis and Nonlinear Programming," Papers 2409.09065, arXiv.org.
  • Handle: RePEc:arx:papers:2409.09065
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.09065
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.09065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.