IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.03762.html
   My bibliography  Save this paper

Combining supervised and unsupervised learning methods to predict financial market movements

Author

Listed:
  • Gabriel Rodrigues Palma
  • Mariusz Skocze'n
  • Phil Maguire

Abstract

The decisions traders make to buy or sell an asset depend on various analyses, with expertise required to identify patterns that can be exploited for profit. In this paper we identify novel features extracted from emergent and well-established financial markets using linear models and Gaussian Mixture Models (GMM) with the aim of finding profitable opportunities. We used approximately six months of data consisting of minute candles from the Bitcoin, Pepecoin, and Nasdaq markets to derive and compare the proposed novel features with commonly used ones. These features were extracted based on the previous 59 minutes for each market and used to identify predictions for the hour ahead. We explored the performance of various machine learning strategies, such as Random Forests (RF) and K-Nearest Neighbours (KNN) to classify market movements. A naive random approach to selecting trading decisions was used as a benchmark, with outcomes assumed to be equally likely. We used a temporal cross-validation approach using test sets of 40%, 30% and 20% of total hours to evaluate the learning algorithms' performances. Our results showed that filtering the time series facilitates algorithms' generalisation. The GMM filtering approach revealed that the KNN and RF algorithms produced higher average returns than the random algorithm.

Suggested Citation

  • Gabriel Rodrigues Palma & Mariusz Skocze'n & Phil Maguire, 2024. "Combining supervised and unsupervised learning methods to predict financial market movements," Papers 2409.03762, arXiv.org.
  • Handle: RePEc:arx:papers:2409.03762
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.03762
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiguo Huang & Linyu Cao & Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2024. "Enhancing Portfolio Optimization: A Two-Stage Approach with Deep Learning and Portfolio Optimization," Mathematics, MDPI, vol. 12(21), pages 1-21, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.03762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.