IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.16260.html
   My bibliography  Save this paper

A General Framework for Optimizing and Learning Nash Equilibrium

Author

Listed:
  • Di Zhang
  • Wei Gu
  • Qing Jin

Abstract

One key in real-life Nash equilibrium applications is to calibrate players' cost functions. To leverage the approximation ability of neural networks, we proposed a general framework for optimizing and learning Nash equilibrium using neural networks to estimate players' cost functions. Depending on the availability of data, we propose two approaches (a) the two-stage approach: we need the data pair of players' strategy and relevant function value to first learn the players' cost functions by monotonic neural networks or graph neural networks, and then solve the Nash equilibrium with the learned neural networks; (b) the joint approach: we use the data of partial true observation of the equilibrium and contextual information (e.g., weather) to optimize and learn Nash equilibrium simultaneously. The problem is formulated as an optimization problem with equilibrium constraints and solved using a modified Backpropagation Algorithm. The proposed methods are validated in numerical experiments.

Suggested Citation

  • Di Zhang & Wei Gu & Qing Jin, 2024. "A General Framework for Optimizing and Learning Nash Equilibrium," Papers 2408.16260, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2408.16260
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.16260
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.16260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.