IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.10016.html
   My bibliography  Save this paper

High-Frequency Trading Liquidity Analysis | Application of Machine Learning Classification

Author

Listed:
  • Sid Bhatia
  • Sidharth Peri
  • Sam Friedman
  • Michelle Malen

Abstract

This research presents a comprehensive framework for analyzing liquidity in financial markets, particularly in the context of high-frequency trading. By leveraging advanced machine learning classification techniques, including Logistic Regression, Support Vector Machine, and Random Forest, the study aims to predict minute-level price movements using an extensive set of liquidity metrics derived from the Trade and Quote (TAQ) data. The findings reveal that employing a broad spectrum of liquidity measures yields higher predictive accuracy compared to models utilizing a reduced subset of features. Key liquidity metrics, such as Liquidity Ratio, Flow Ratio, and Turnover, consistently emerged as significant predictors across all models, with the Random Forest algorithm demonstrating superior accuracy. This study not only underscores the critical role of liquidity in market stability and transaction costs but also highlights the complexities involved in short-interval market predictions. The research suggests that a comprehensive set of liquidity measures is essential for accurate prediction, and proposes future work to validate these findings across different stock datasets to assess their generalizability.

Suggested Citation

  • Sid Bhatia & Sidharth Peri & Sam Friedman & Michelle Malen, 2024. "High-Frequency Trading Liquidity Analysis | Application of Machine Learning Classification," Papers 2408.10016, arXiv.org.
  • Handle: RePEc:arx:papers:2408.10016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.10016
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.10016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.