IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.09618.html
   My bibliography  Save this paper

kendallknight: An R Package for Efficient Implementation of Kendall's Correlation Coefficient Computation

Author

Listed:
  • Mauricio Vargas Sep'ulveda

Abstract

The kendallknight package introduces an efficient implementation of Kendall's correlation coefficient computation, significantly improving the processing time for large datasets without sacrificing accuracy. The kendallknight package, following Knight (1966) and posterior literature, reduces the computational complexity resulting in drastic reductions in computation time, transforming operations that would take minutes or hours into milliseconds or minutes, while maintaining precision and correctly handling edge cases and errors. The package is particularly advantageous in econometric and statistical contexts where rapid and accurate calculation of Kendall's correlation coefficient is desirable. Benchmarks demonstrate substantial performance gains over the base R implementation, especially for large datasets.

Suggested Citation

  • Mauricio Vargas Sep'ulveda, 2024. "kendallknight: An R Package for Efficient Implementation of Kendall's Correlation Coefficient Computation," Papers 2408.09618, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2408.09618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.09618
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.