IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.08866.html
   My bibliography  Save this paper

High-Frequency Options Trading | With Portfolio Optimization

Author

Listed:
  • Sid Bhatia

Abstract

This paper explores the effectiveness of high-frequency options trading strategies enhanced by advanced portfolio optimization techniques, investigating their ability to consistently generate positive returns compared to traditional long or short positions on options. Utilizing SPY options data recorded in five-minute intervals over a one-month period, we calculate key metrics such as Option Greeks and implied volatility, applying the Binomial Tree model for American options pricing and the Newton-Raphson algorithm for implied volatility calculation. Investment universes are constructed based on criteria like implied volatility and Greeks, followed by the application of various portfolio optimization models, including Standard Mean-Variance and Robust Methods. Our research finds that while basic long-short strategies centered on implied volatility and Greeks generally underperform, more sophisticated strategies incorporating advanced Greeks, such as Vega and Rho, along with dynamic portfolio optimization, show potential in effectively navigating the complexities of the options market. The study highlights the importance of adaptability and responsiveness in dynamic portfolio strategies within the high-frequency trading environment, particularly under volatile market conditions. Future research could refine strategy parameters and explore less frequently traded options, offering new insights into high-frequency options trading and portfolio management.

Suggested Citation

  • Sid Bhatia, 2024. "High-Frequency Options Trading | With Portfolio Optimization," Papers 2408.08866, arXiv.org.
  • Handle: RePEc:arx:papers:2408.08866
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.08866
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.08866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.