IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.05690.html
   My bibliography  Save this paper

Strong denoising of financial time-series

Author

Listed:
  • Matthias J. Feiler

Abstract

In this paper we introduce a method for significantly improving the signal to noise ratio in financial data. The approach relies on combining a target variable with different context variables and use auto-encoders (AEs) to learn reconstructions of the combined inputs. The objective is to obtain agreement among pairs of AEs which are trained on related but different inputs and for which they are forced to find common ground. The training process is set up as a "conversation" where the models take turns at producing a prediction (speaking) and reconciling own predictions with the output of the other AE (listening), until an agreement is reached. This leads to a new way of constraining the complexity of the data representation generated by the AE. Unlike standard regularization whose strength needs to be decided by the designer, the proposed mutual regularization uses the partner network to detect and amend the lack of generality of the learned representation of the data. The integration of alternative perspectives enhances the de-noising capacity of a single AE and allows us to discover new regularities in financial time-series which can be converted into profitable trading strategies.

Suggested Citation

  • Matthias J. Feiler, 2024. "Strong denoising of financial time-series," Papers 2408.05690, arXiv.org.
  • Handle: RePEc:arx:papers:2408.05690
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.05690
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.05690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.