IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.04617.html
   My bibliography  Save this paper

Difference-in-Differences for Health Policy and Practice: A Review of Modern Methods

Author

Listed:
  • Shuo Feng
  • Ishani Ganguli
  • Youjin Lee
  • John Poe
  • Andrew Ryan
  • Alyssa Bilinski

Abstract

Difference-in-differences (DiD) is the most popular observational causal inference method in health policy, employed to evaluate the real-world impact of policies and programs. To estimate treatment effects, DiD relies on the "parallel trends assumption", that on average treatment and comparison groups would have had parallel trajectories in the absence of an intervention. Historically, DiD has been considered broadly applicable and straightforward to implement, but recent years have seen rapid advancements in DiD methods. This paper reviews and synthesizes these innovations for medical and health policy researchers. We focus on four topics: (1) assessing the parallel trends assumption in health policy contexts; (2) relaxing the parallel trends assumption when appropriate; (3) employing estimators to account for staggered treatment timing; and (4) conducting robust inference for analyses in which normal-based clustered standard errors are inappropriate. For each, we explain challenges and common pitfalls in traditional DiD and modern methods available to address these issues.

Suggested Citation

  • Shuo Feng & Ishani Ganguli & Youjin Lee & John Poe & Andrew Ryan & Alyssa Bilinski, 2024. "Difference-in-Differences for Health Policy and Practice: A Review of Modern Methods," Papers 2408.04617, arXiv.org.
  • Handle: RePEc:arx:papers:2408.04617
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.04617
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.04617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.