IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.02064.html
   My bibliography  Save this paper

A Path Integral Approach for Time-Dependent Hamiltonians with Applications to Derivatives Pricing

Author

Listed:
  • Mark Stedman
  • Luca Capriotti

Abstract

We generalize a semi-classical path integral approach originally introduced by Giachetti and Tognetti [Phys. Rev. Lett. 55, 912 (1985)] and Feynman and Kleinert [Phys. Rev. A 34, 5080 (1986)] to time-dependent Hamiltonians, thus extending the scope of the method to the pricing of financial derivatives. We illustrate the accuracy of the approach by presenting results for the well-known, but analytically intractable, Black-Karasinski model for the dynamics of interest rates. The accuracy and computational efficiency of this path integral approach makes it a viable alternative to fully-numerical schemes for a variety of applications in derivatives pricing.

Suggested Citation

  • Mark Stedman & Luca Capriotti, 2024. "A Path Integral Approach for Time-Dependent Hamiltonians with Applications to Derivatives Pricing," Papers 2408.02064, arXiv.org.
  • Handle: RePEc:arx:papers:2408.02064
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.02064
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.02064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.