IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.16510.html
   My bibliography  Save this paper

Large Language Models in Student Assessment: Comparing ChatGPT and Human Graders

Author

Listed:
  • Magnus Lundgren

Abstract

This study investigates the efficacy of large language models (LLMs) as tools for grading master-level student essays. Utilizing a sample of 60 essays in political science, the study compares the accuracy of grades suggested by the GPT-4 model with those awarded by university teachers. Results indicate that while GPT-4 aligns with human grading standards on mean scores, it exhibits a risk-averse grading pattern and its interrater reliability with human raters is low. Furthermore, modifications in the grading instructions (prompt engineering) do not significantly alter AI performance, suggesting that GPT-4 primarily assesses generic essay characteristics such as language quality rather than adapting to nuanced grading criteria. These findings contribute to the understanding of AI's potential and limitations in higher education, highlighting the need for further development to enhance its adaptability and sensitivity to specific educational assessment requirements.

Suggested Citation

  • Magnus Lundgren, 2024. "Large Language Models in Student Assessment: Comparing ChatGPT and Human Graders," Papers 2406.16510, arXiv.org.
  • Handle: RePEc:arx:papers:2406.16510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.16510
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.16510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.