IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.11908.html
   My bibliography  Save this paper

Research on Trends in Illegal Wildlife Trade based on Comprehensive Growth Dynamic Model

Author

Listed:
  • Run-Xuan Tang

Abstract

This paper presents an innovative Comprehensive Growth Dynamic Model (CGDM). CGDM is designed to simulate the temporal evolution of an event, incorporating economic and social factors. CGDM is a regression of logistic regression, power law regression, and Gaussian perturbation term. CGDM is comprised of logistic regression, power law regression, and Gaussian perturbation term. CGDM can effectively forecast the temporal evolution of an event, incorporating economic and social factors. The illicit trade in wildlife has a deleterious impact on the ecological environment. In this paper, we employ CGDM to forecast the trajectory of illegal wildlife trade from 2024 to 2034 in China. The mean square error is utilized as the loss function. The model illuminates the future trajectory of illegal wildlife trade, with a minimum point occurring in 2027 and a maximum point occurring in 2029. The stability of contemporary society can be inferred. CGDM's robust and generalizable nature is also evident.

Suggested Citation

  • Run-Xuan Tang, 2024. "Research on Trends in Illegal Wildlife Trade based on Comprehensive Growth Dynamic Model," Papers 2406.11908, arXiv.org.
  • Handle: RePEc:arx:papers:2406.11908
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.11908
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vu, Anh Ngoc, 2023. "Demand reduction campaigns for the illegal wildlife trade in authoritarian Vietnam: Ungrounded environmentalism," World Development, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.11908. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.