IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.06552.html
   My bibliography  Save this paper

Optimizing Sharpe Ratio: Risk-Adjusted Decision-Making in Multi-Armed Bandits

Author

Listed:
  • Sabrina Khurshid
  • Mohammed Shahid Abdulla
  • Gourab Ghatak

Abstract

Sharpe Ratio (SR) is a critical parameter in characterizing financial time series as it jointly considers the reward and the volatility of any stock/portfolio through its variance. Deriving online algorithms for optimizing the SR is particularly challenging since even offline policies experience constant regret with respect to the best expert Even-Dar et al (2006). Thus, instead of optimizing the usual definition of SR, we optimize regularized square SR (RSSR). We consider two settings for the RSSR, Regret Minimization (RM) and Best Arm Identification (BAI). In this regard, we propose a novel multi-armed bandit (MAB) algorithm for RM called UCB-RSSR for RSSR maximization. We derive a path-dependent concentration bound for the estimate of the RSSR. Based on that, we derive the regret guarantees of UCB-RSSR and show that it evolves as O(log n) for the two-armed bandit case played for a horizon n. We also consider a fixed budget setting for well-known BAI algorithms, i.e., sequential halving and successive rejects, and propose SHVV, SHSR, and SuRSR algorithms. We derive the upper bound for the error probability of all proposed BAI algorithms. We demonstrate that UCB-RSSR outperforms the only other known SR optimizing bandit algorithm, U-UCB Cassel et al (2023). We also establish its efficacy with respect to other benchmarks derived from the GRA-UCB and MVTS algorithms. We further demonstrate the performance of proposed BAI algorithms for multiple different setups. Our research highlights that our proposed algorithms will find extensive applications in risk-aware portfolio management problems. Consequently, our research highlights that our proposed algorithms will find extensive applications in risk-aware portfolio management problems.

Suggested Citation

  • Sabrina Khurshid & Mohammed Shahid Abdulla & Gourab Ghatak, 2024. "Optimizing Sharpe Ratio: Risk-Adjusted Decision-Making in Multi-Armed Bandits," Papers 2406.06552, arXiv.org.
  • Handle: RePEc:arx:papers:2406.06552
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.06552
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.06552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.