IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.19578.html
   My bibliography  Save this paper

The Accuracy of Domain Specific and Descriptive Analysis Generated by Large Language Models

Author

Listed:
  • Denish Omondi Otieno
  • Faranak Abri
  • Sima Siami-Namini
  • Akbar Siami Namin

Abstract

Large language models (LLMs) have attracted considerable attention as they are capable of showcasing impressive capabilities generating comparable high-quality responses to human inputs. LLMs, can not only compose textual scripts such as emails and essays but also executable programming code. Contrary, the automated reasoning capability of these LLMs in performing statistically-driven descriptive analysis, particularly on user-specific data and as personal assistants to users with limited background knowledge in an application domain who would like to carry out basic, as well as advanced statistical and domain-specific analysis is not yet fully explored. More importantly, the performance of these LLMs has not been compared and discussed in detail when domain-specific data analysis tasks are needed. This study, consequently, explores whether LLMs can be used as generative AI-based personal assistants to users with minimal background knowledge in an application domain infer key data insights. To demonstrate the performance of the LLMs, the study reports a case study through which descriptive statistical analysis, as well as Natural Language Processing (NLP) based investigations, are performed on a number of phishing emails with the objective of comparing the accuracy of the results generated by LLMs to the ones produced by analysts. The experimental results show that LangChain and the Generative Pre-trained Transformer (GPT-4) excel in numerical reasoning tasks i.e., temporal statistical analysis, achieve competitive correlation with human judgments on feature engineering tasks while struggle to some extent on domain specific knowledge reasoning, where domain-specific knowledge is required.

Suggested Citation

  • Denish Omondi Otieno & Faranak Abri & Sima Siami-Namini & Akbar Siami Namin, 2024. "The Accuracy of Domain Specific and Descriptive Analysis Generated by Large Language Models," Papers 2405.19578, arXiv.org.
  • Handle: RePEc:arx:papers:2405.19578
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.19578
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.19578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.