IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.19225.html
   My bibliography  Save this paper

Synthetic Potential Outcomes and Causal Mixture Identifiability

Author

Listed:
  • Bijan Mazaheri
  • Chandler Squires
  • Caroline Uhler

Abstract

Heterogeneous data from multiple populations, sub-groups, or sources is often represented as a ``mixture model'' with a single latent class influencing all of the observed covariates. Heterogeneity can be resolved at multiple levels by grouping populations according to different notions of similarity. This paper proposes grouping with respect to the causal response of an intervention or perturbation on the system. This definition is distinct from previous notions, such as similar covariate values (e.g. clustering) or similar correlations between covariates (e.g. Gaussian mixture models). To solve the problem, we ``synthetically sample'' from a counterfactual distribution using higher-order multi-linear moments of the observable data. To understand how these ``causal mixtures'' fit in with more classical notions, we develop a hierarchy of mixture identifiability.

Suggested Citation

  • Bijan Mazaheri & Chandler Squires & Caroline Uhler, 2024. "Synthetic Potential Outcomes and Causal Mixture Identifiability," Papers 2405.19225, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2405.19225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.19225
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.19225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.