IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.16052.html
   My bibliography  Save this paper

Identifying Extreme Events in the Stock Market: A Topological Data Analysis

Author

Listed:
  • Anish Rai
  • Buddha Nath Sharma
  • Salam Rabindrajit Luwang
  • Md. Nurujjaman
  • Sushovan Majhi

Abstract

This paper employs Topological Data Analysis (TDA) to detect extreme events (EEs) in the stock market at a continental level. Previous approaches, which analyzed stock indices separately, could not detect EEs for multiple time series in one go. TDA provides a robust framework for such analysis and identifies the EEs during the crashes for different indices. The TDA analysis shows that $L^1$, $L^2$ norms and Wasserstein distance ($W_D$) of the world leading indices rise abruptly during the crashes, surpassing a threshold of $\mu+4*\sigma$ where $\mu$ and $\sigma$ are the mean and the standard deviation of norm or $W_D$, respectively. Our study identified the stock index crashes of the 2008 financial crisis and the COVID-19 pandemic across continents as EEs. Given that different sectors in an index behave differently, a sector-wise analysis was conducted during the COVID-19 pandemic for the Indian stock market. The sector-wise results show that after the occurrence of EE, we have observed strong crashes surpassing $\mu+2*\sigma$ for an extended period for the banking sector. While for the pharmaceutical sector, no significant spikes were noted. Hence, TDA also proves successful in identifying the duration of shocks after the occurrence of EEs. This also indicates that the Banking sector continued to face stress and remained volatile even after the crash. This study gives us the applicability of TDA as a powerful analytical tool to study EEs in various fields.

Suggested Citation

  • Anish Rai & Buddha Nath Sharma & Salam Rabindrajit Luwang & Md. Nurujjaman & Sushovan Majhi, 2024. "Identifying Extreme Events in the Stock Market: A Topological Data Analysis," Papers 2405.16052, arXiv.org.
  • Handle: RePEc:arx:papers:2405.16052
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.16052
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.16052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.