IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.01598.html
   My bibliography  Save this paper

Predictive Decision Synthesis for Portfolios: Betting on Better Models

Author

Listed:
  • Emily Tallman
  • Mike West

Abstract

We discuss and develop Bayesian dynamic modelling and predictive decision synthesis for portfolio analysis. The context involves model uncertainty with a set of candidate models for financial time series with main foci in sequential learning, forecasting, and recursive decisions for portfolio reinvestments. The foundational perspective of Bayesian predictive decision synthesis (BPDS) defines novel, operational analysis and resulting predictive and decision outcomes. A detailed case study of BPDS in financial forecasting of international exchange rate time series and portfolio rebalancing, with resulting BPDS-based decision outcomes compared to traditional Bayesian analysis, exemplifies and highlights the practical advances achievable under the expanded, subjective Bayesian approach that BPDS defines.

Suggested Citation

  • Emily Tallman & Mike West, 2024. "Predictive Decision Synthesis for Portfolios: Betting on Better Models," Papers 2405.01598, arXiv.org.
  • Handle: RePEc:arx:papers:2405.01598
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.01598
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision Synthesis in Monetary Policy," Staff Working Papers 24-30, Bank of Canada.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    2. Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
    3. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    4. Eklund, Jana & Karlsson, Sune, 2007. "An Embarrassment of Riches: Forecasting Using Large Panels," Working Papers 2007:1, Örebro University, School of Business.
    5. Cogley, Timothy & De Paoli, Bianca & Matthes, Christian & Nikolov, Kalin & Yates, Tony, 2011. "A Bayesian approach to optimal monetary policy with parameter and model uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2186-2212.
    6. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    7. Ebersberger, Bernd & Galia, Fabrice & Laursen, Keld & Salter, Ammon, 2021. "Inbound Open Innovation and Innovation Performance: A Robustness Study," Research Policy, Elsevier, vol. 50(7).
    8. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    10. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    11. Eliana González, 2010. "Bayesian Model Averaging. An Application to Forecast Inflation in Colombia," Borradores de Economia 7013, Banco de la Republica.
    12. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    13. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    14. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    15. Peter J. Danaher & Michael S. Smith, 2011. "Rejoinder--Estimation Issues for Copulas Applied to Marketing Data," Marketing Science, INFORMS, vol. 30(1), pages 25-28, 01-02.
    16. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    17. Huigang Chen & Mr. Alin T Mirestean & Mr. Charalambos G Tsangarides, 2011. "Limited Information Bayesian Model Averaging for Dynamic Panels with An Application to a Trade Gravity Model," IMF Working Papers 2011/230, International Monetary Fund.
    18. Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
    19. Scharnagl, Michael & Schumacher, Christian, 2007. "Reconsidering the role of monetary indicators for euro area inflation from a Bayesian perspective using group inclusion probabilities," Discussion Paper Series 1: Economic Studies 2007,09, Deutsche Bundesbank.
    20. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.01598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.