IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.00701.html
   My bibliography  Save this paper

Learning parameter dependence for Fourier-based option pricing with tensor trains

Author

Listed:
  • Rihito Sakurai
  • Haruto Takahashi
  • Koichi Miyamoto

Abstract

A long-standing issue in mathematical finance is the speed-up of option pricing, especially for multi-asset options. A recent study has proposed to use tensor train learning algorithms to speed up Fourier transform (FT)-based option pricing, utilizing the ability of tensor trains to compress high-dimensional tensors. Another usage of the tensor train is to compress functions, including their parameter dependence. Here, we propose a pricing method, where, by a tensor train learning algorithm, we build tensor trains that approximate functions appearing in FT-based option pricing with their parameter dependence and efficiently calculate the option price for the varying input parameters. As a benchmark test, we run the proposed method to price a multi-asset option for the various values of volatilities and present asset prices. We show that, in the tested cases involving up to 11 assets, the proposed method outperforms Monte Carlo-based option pricing with $10^6$ paths in terms of computational complexity while keeping better accuracy.

Suggested Citation

  • Rihito Sakurai & Haruto Takahashi & Koichi Miyamoto, 2024. "Learning parameter dependence for Fourier-based option pricing with tensor trains," Papers 2405.00701, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2405.00701
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.00701
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    2. Michael Kastoryano & Nicola Pancotti, 2022. "A highly efficient tensor network algorithm for multi-asset Fourier options pricing," Papers 2203.02804, arXiv.org.
    3. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    2. repec:uts:finphd:41 is not listed on IDEAS
    3. Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Michael Samet & Ra'ul Tempone, 2024. "Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options," Papers 2403.02832, arXiv.org.
    4. Fajardo, José, 2015. "Barrier style contracts under Lévy processes: An alternative approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 179-187.
    5. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    6. Kevin Kurt & Rudiger Frey, 2021. "Markov-Modulated Affine Processes," Papers 2106.16240, arXiv.org, revised Aug 2022.
    7. Kurt, Kevin & Frey, Rüdiger, 2022. "Markov-modulated affine processes," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 391-422.
    8. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    9. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    10. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    11. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    12. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    13. Michael Schmutz & Thomas Zürcher, 2014. "Static Hedging with Traffic Light Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 690-702, July.
    14. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    15. Stefan Waldenberger, 2015. "The affine inflation market models," Papers 1503.04979, arXiv.org.
    16. Alessandro Ramponi, 2012. "Fourier Transform Methods For Regime-Switching Jump-Diffusions And The Pricing Of Forward Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-26.
    17. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    18. Fred Espen Benth & Giulia Di Nunno & Asma Khedher & Maren Diane Schmeck, 2015. "Pricing of Spread Options on a Bivariate Jump Market and Stability to Model Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(1), pages 28-62, March.
    19. Christian Bayer & John Schoenmakers, 2015. "Option pricing in affine generalized Merton models," Papers 1512.03677, arXiv.org.
    20. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    21. Alvaro Cartea & Sam Howison, 2009. "Option pricing with Levy-Stable processes generated by Levy-Stable integrated variance," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 397-409.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.00701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.