IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.02582.html
   My bibliography  Save this paper

Quantum computing approach to realistic ESG-friendly stock portfolios

Author

Listed:
  • Francesco Catalano
  • Laura Nasello
  • Daniel Guterding

Abstract

Finding an optimal balance between risk and returns in investment portfolios is a central challenge in quantitative finance, often addressed through Markowitz portfolio theory (MPT). While traditional portfolio optimization is carried out in a continuous fashion, as if stocks could be bought in fractional increments, practical implementations often resort to approximations, as fractional stocks are typically not tradeable. While these approximations are effective for large investment budgets, they deteriorate as budgets decrease. To alleviate this issue, a discrete Markowitz portfolio theory (DMPT) with finite budgets and integer stock weights can be formulated, but results in a non-polynomial (NP)-hard problem. Recent progress in quantum processing units (QPUs), including quantum annealers, makes solving DMPT problems feasible. Our study explores portfolio optimization on quantum annealers, establishing a mapping between continuous and discrete Markowitz portfolio theories. We find that correctly normalized discrete portfolios converge to continuous solutions as budgets increase. Our DMPT implementation provides efficient frontier solutions, outperforming traditional rounding methods, even for moderate budgets. Responding to the demand for environmentally and socially responsible investments, we enhance our discrete portfolio optimization with ESG (environmental, social, governance) ratings for EURO STOXX 50 index stocks. We introduce a utility function incorporating ESG ratings to balance risk, return, and ESG-friendliness, and discuss implications for ESG-aware investors.

Suggested Citation

  • Francesco Catalano & Laura Nasello & Daniel Guterding, 2024. "Quantum computing approach to realistic ESG-friendly stock portfolios," Papers 2404.02582, arXiv.org.
  • Handle: RePEc:arx:papers:2404.02582
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.02582
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.02582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.