IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.10574.html
   My bibliography  Save this paper

Nowcasting with Mixed Frequency Data Using Gaussian Processes

Author

Listed:
  • Niko Hauzenberger
  • Massimiliano Marcellino
  • Michael Pfarrhofer
  • Anna Stelzer

Abstract

We develop Bayesian machine learning methods for mixed data sampling (MIDAS) regressions. This involves handling frequency mismatches and specifying functional relationships between many predictors and the dependent variable. We use Gaussian processes (GPs) and compress the input space with structured and unstructured MIDAS variants. This yields several versions of GP-MIDAS with distinct properties and implications, which we evaluate in short-horizon now- and forecasting exercises with both simulated data and data on quarterly US output growth and inflation in the GDP deflator. It turns out that our proposed framework leverages macroeconomic Big Data in a computationally efficient way and offers gains in predictive accuracy compared to other machine learning approaches along several dimensions.

Suggested Citation

  • Niko Hauzenberger & Massimiliano Marcellino & Michael Pfarrhofer & Anna Stelzer, 2024. "Nowcasting with Mixed Frequency Data Using Gaussian Processes," Papers 2402.10574, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2402.10574
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.10574
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    3. JÖrg Breitung & Christoph Roling, 2015. "Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 588-603, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manfred M. Fischer & Florian Huber & Michael Pfarrhofer, 2018. "The transmission of uncertainty shocks on income inequality: State-level evidence from the United States," Papers 1806.08278, arXiv.org.
    2. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    3. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    4. Andrejs Zlobins, 2020. "Country-level effects of the ECB’s expanded asset purchase programme," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 20(2), pages 187-217.
    5. Gupta, Rangan & Nel, Jacobus & Salisu, Afees A. & Ji, Qiang, 2023. "Predictability of economic slowdowns in advanced countries over eight centuries: The role of climate risks," Finance Research Letters, Elsevier, vol. 54(C).
    6. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    7. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    8. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    9. Shin, Minchul & Zhang, Boyuan & Zhong, Molin & Lee, Dong Jin, 2018. "Measuring international uncertainty: The case of Korea," Economics Letters, Elsevier, vol. 162(C), pages 22-26.
    10. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    11. Kiss, Tamás & Nguyen, Hoang & Österholm, Pär, 2022. "The Relation between the High-Yield Bond Spread and the Unemployment Rate in the Euro Area," Finance Research Letters, Elsevier, vol. 46(PA).
    12. Wang, Shixuan & Gupta, Rangan & Zhang, Yue-Jun, 2021. "Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data," Finance Research Letters, Elsevier, vol. 43(C).
    13. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Papers 2202.13793, arXiv.org.
    14. Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2023. "Investigating Growth-at-Risk Using a Multicountry Non-parametric Quantile Factor Model," CEPR Discussion Papers 18549, C.E.P.R. Discussion Papers.
    15. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang, 2022. "Predicting returns and dividend growth — The role of non-Gaussian innovations," Finance Research Letters, Elsevier, vol. 46(PA).
    16. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    17. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    18. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    19. Liu, Wei-han, 2016. "A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility," Energy Economics, Elsevier, vol. 56(C), pages 351-362.
    20. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.10574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.