IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.09820.html
   My bibliography  Save this paper

Utilizing Deep Learning for Enhancing Network Resilience in Finance

Author

Listed:
  • Yulu Gong
  • Mengran Zhu
  • Shuning Huo
  • Yafei Xiang
  • Hanyi Yu

Abstract

In the age of the Internet, people's lives are increasingly dependent on today's network technology. Maintaining network integrity and protecting the legitimate interests of users is at the heart of network construction. Threat detection is an important part of a complete and effective defense system. How to effectively detect unknown threats is one of the concerns of network protection. Currently, network threat detection is usually based on rules and traditional machine learning methods, which create artificial rules or extract common spatiotemporal features, which cannot be applied to large-scale data applications, and the emergence of unknown risks causes the detection accuracy of the original model to decline. With this in mind, this paper uses deep learning for advanced threat detection to improve protective measures in the financial industry. Many network researchers have shifted their focus to exception-based intrusion detection techniques. The detection technology mainly uses statistical machine learning methods - collecting normal program and network behavior data, extracting multidimensional features, and training decision machine learning models on this basis (commonly used include naive Bayes, decision trees, support vector machines, random forests, etc.).

Suggested Citation

  • Yulu Gong & Mengran Zhu & Shuning Huo & Yafei Xiang & Hanyi Yu, 2024. "Utilizing Deep Learning for Enhancing Network Resilience in Finance," Papers 2402.09820, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2402.09820
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.09820
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.09820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.