IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.00184.html
   My bibliography  Save this paper

The Heterogeneous Aggregate Valence Analysis (HAVAN) Model: A Flexible Approach to Modeling Unobserved Heterogeneity in Discrete Choice Analysis

Author

Listed:
  • Connor R. Forsythe
  • Cristian Arteaga
  • John P. Helveston

Abstract

This paper introduces the Heterogeneous Aggregate Valence Analysis (HAVAN) model, a novel class of discrete choice models. We adopt the term "valence'' to encompass any latent quantity used to model consumer decision-making (e.g., utility, regret, etc.). Diverging from traditional models that parameterize heterogeneous preferences across various product attributes, HAVAN models (pronounced "haven") instead directly characterize alternative-specific heterogeneous preferences. This innovative perspective on consumer heterogeneity affords unprecedented flexibility and significantly reduces simulation burdens commonly associated with mixed logit models. In a simulation experiment, the HAVAN model demonstrates superior predictive performance compared to state-of-the-art artificial neural networks. This finding underscores the potential for HAVAN models to improve discrete choice modeling capabilities.

Suggested Citation

  • Connor R. Forsythe & Cristian Arteaga & John P. Helveston, 2024. "The Heterogeneous Aggregate Valence Analysis (HAVAN) Model: A Flexible Approach to Modeling Unobserved Heterogeneity in Discrete Choice Analysis," Papers 2402.00184, arXiv.org.
  • Handle: RePEc:arx:papers:2402.00184
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.00184
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shenhao Wang & Baichuan Mo & Stephane Hess & Jinhua Zhao, 2021. "Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark," Papers 2102.01130, arXiv.org.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    3. Chris Kavalec, 1999. "Vehicle Choice in an Aging Population: Some Insights from a Stated Preference Survey for California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 123-138.
    4. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyce, Christopher & Czajkowski, Mikołaj & Hanley, Nick, 2019. "Personality and economic choices," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 82-100.
    2. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    3. Zemo, Kahsay Haile & Termansen, Mette, 2018. "Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study," Resource and Energy Economics, Elsevier, vol. 52(C), pages 87-101.
    4. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    5. Malte Welling & Ewa Zawojska & Julian Sagebiel, 2022. "Information, Consequentiality and Credibility in Stated Preference Surveys: A Choice Experiment on Climate Adaptation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(1), pages 257-283, May.
    6. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    7. Wiktor Budziński & Mikołaj Czajkowski, 2021. "Accounting for Spatial Heterogeneity of Preferences in Discrete Choice Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(1), pages 1-24, March.
    8. Faccioli, Michela & Czajkowski, Mikołaj & Glenk, Klaus & Martin-Ortega, Julia, 2020. "Environmental attitudes and place identity as determinants of preferences for ecosystem services," Ecological Economics, Elsevier, vol. 174(C).
    9. John Buckell & David A Hensher & Stephane Hess, 2021. "Kicking the habit is hard: A hybrid choice model investigation into the role of addiction in smoking behavior," Health Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 3-19, January.
    10. Wiktor Budziński & Mikołaj Czajkowski, 2022. "Endogeneity and Measurement Bias of the Indicator Variables in Hybrid Choice Models: A Monte Carlo Investigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 605-629, November.
    11. Robert J. Johnston & Tom Ndebele & David A. Newburn, 2023. "Modeling transaction costs in household adoption of landscape conservation practices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 341-367, January.
    12. Ying, Jiahui & Shonkwiler, Vanessa P. & Campbell, Benjamin L., 2018. "Willingness to Pay or Not to Pay: Valuing Foods Some Respondents Find Distasteful," 2018 Annual Meeting, August 5-7, Washington, D.C. 274065, Agricultural and Applied Economics Association.
    13. Ahi, Jülide Ceren & Aanesen, Margrethe & Kipperberg, Gorm, 2023. "Testing the sensitivity of stated environmental preferences to variations in choice architecture," Ecological Economics, Elsevier, vol. 205(C).
    14. Genie, Mesfin G. & Ryan, Mandy & Krucien, Nicolas, 2021. "To pay or not to pay? Cost information processing in the valuation of publicly funded healthcare," Social Science & Medicine, Elsevier, vol. 276(C).
    15. Coote, Leonard V. & Swait, Joffre & Adamowicz, Wiktor, 2021. "Separating generalizable from source-specific preference heterogeneity in the fusion of revealed and stated preferences," Journal of choice modelling, Elsevier, vol. 40(C).
    16. Michela Faccioli & Laure Kuhfuss & Mikołaj Czajkowski, 2019. "Stated Preferences for Conservation Policies Under Uncertainty: Insights on the Effect of Individuals’ Risk Attitudes in the Environmental Domain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 627-659, June.
    17. Molloy, Joseph & Becker, Felix & Schmid, Basil & Axhausen, Kay W., 2021. "mixl: An open-source R package for estimating complex choice models on large datasets," Journal of choice modelling, Elsevier, vol. 39(C).
    18. Dugstad, Anders & Brouwer, Roy & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2024. "Nature is ours! – Psychological ownership and preferences for wind energy," Energy Economics, Elsevier, vol. 129(C).
    19. Linnerud, K. & Dugstad, A. & Rygg, B.J., 2022. "Do people prefer offshore to onshore wind energy? The role of ownership and intended use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.00184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.