Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
- Dorfleitner, Gregor & Priberny, Christopher & Schuster, Stephanie & Stoiber, Johannes & Weber, Martina & de Castro, Ivan & Kammler, Julia, 2016. "Description-text related soft information in peer-to-peer lending – Evidence from two leading European platforms," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 169-187.
- Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024.
"Machine learning in bank merger prediction: A text-based approach,"
European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
- Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2021. "Machine Learning in U.S. Bank Merger Prediction: A Text-Based Approach," MPRA Paper 108272, University Library of Munich, Germany.
- Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
- Das, Ronnie & Ahmed, Wasim & Sharma, Kshitij & Hardey, Mariann & Dwivedi, Yogesh K. & Zhang, Ziqi & Apostolidis, Chrysostomos & Filieri, Raffaele, 2024. "Towards the development of an explainable e-commerce fake review index: An attribute analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 382-400.
- Vairetti, Carla & Aránguiz, Ignacio & Maldonado, Sebastián & Karmy, Juan Pablo & Leal, Alonso, 2024. "Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1108-1118.
- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Adam Nowak & Amanda Ross & Christopher Yencha, 2018.
"Small Business Borrowing And Peer‐To‐Peer Lending: Evidence From Lending Club,"
Contemporary Economic Policy, Western Economic Association International, vol. 36(2), pages 318-336, April.
- Adam Nowak & Amanda Ross & Christopher Yencha, 2015. "Small Business Borrowing and Peer-to-Peer Lending: Evidence from Lending Club," Working Papers 15-28, Department of Economics, West Virginia University.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2024. "Forecasting Credit Ratings: A Case Study where Traditional Methods Outperform Generative LLMs," Papers 2407.17624, arXiv.org, revised Jan 2025.
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
- Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
- Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
- Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
- Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
- Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2024-03-04 (Artificial Intelligence)
- NEP-BAN-2024-03-04 (Banking)
- NEP-BIG-2024-03-04 (Big Data)
- NEP-CMP-2024-03-04 (Computational Economics)
- NEP-IFN-2024-03-04 (International Finance)
- NEP-PAY-2024-03-04 (Payment Systems and Financial Technology)
- NEP-RMG-2024-03-04 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.16458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.