IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.09874.html
   My bibliography  Save this paper

A Quantile Nelson-Siegel model

Author

Listed:
  • Matteo Iacopini
  • Aubrey Poon
  • Luca Rossini
  • Dan Zhu

Abstract

A widespread approach to modelling the interaction between macroeconomic variables and the yield curve relies on three latent factors usually interpreted as the level, slope, and curvature (Diebold et al., 2006). This approach is inherently focused on the conditional mean of the yields and postulates a dynamic linear model where the latent factors smoothly change over time. However, periods of deep crisis, such as the Great Recession and the recent pandemic, have highlighted the importance of statistical models that account for asymmetric shocks and are able to forecast the tails of a variable's distribution. A new version of the dynamic three-factor model is proposed to address this issue based on quantile regressions. The novel approach leverages the potential of quantile regression to model the entire (conditional) distribution of the yields instead of restricting to its mean. An application to US data from the 1970s shows the significant heterogeneity of the interactions between financial and macroeconomic variables across different quantiles. Moreover, an out-of-sample forecasting exercise showcases the proposed method's advantages in predicting the yield distribution tails compared to the standard conditional mean model. Finally, by inspecting the posterior distribution of the three factors during the recent major crises, new evidence is found that supports the greater and longer-lasting negative impact of the great recession on the yields compared to the COVID-19 pandemic.

Suggested Citation

  • Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2024. "A Quantile Nelson-Siegel model," Papers 2401.09874, arXiv.org.
  • Handle: RePEc:arx:papers:2401.09874
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.09874
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    2. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Nowcasting tail risk to economic activity at a weekly frequency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
    4. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, vol. 146(2), pages 351-363, October.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Haroon Mumtaz & Paolo Surico, 2009. "Time-varying yield curve dynamics and monetary policy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 895-913.
    7. Laura Coroneo & Domenico Giannone & Michele Modugno, 2016. "Unspanned Macroeconomic Factors in the Yield Curve," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 472-485, July.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    10. Luca Benzoni & Olena Chyruk & David Kelley, 2018. "Why Does the Yield-Curve Slope Predict Recessions?," Chicago Fed Letter, Federal Reserve Bank of Chicago.
    11. Han, Yang & Jiao, Anqi & Ma, Jun, 2021. "The predictive power of Nelson–Siegel factor loadings for the real economy," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 95-127.
    12. Joseph G. Haubrich, 2021. "Does the Yield Curve Predict Output?," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 341-362, November.
    13. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    14. Fonseca, Luís & McQuade, Peter & Van Robays, Ine & Vladu, Andreea Liliana, 2023. "The inversion of the yield curve and its information content in the euro area and the United States," Economic Bulletin Boxes, European Central Bank, vol. 7.
    15. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    16. Koopman, Siem Jan & van der Wel, Michel, 2013. "Forecasting the US term structure of interest rates using a macroeconomic smooth dynamic factor model," International Journal of Forecasting, Elsevier, vol. 29(4), pages 676-694.
    17. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    18. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    19. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    20. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    21. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    22. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    23. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    24. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yang & Jiao, Anqi & Ma, Jun, 2021. "The predictive power of Nelson–Siegel factor loadings for the real economy," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 95-127.
    2. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2023. "Bayesian Mode Inference for Discrete Distributions in Economics and Finance," Working Papers No 11/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    4. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    5. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    6. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    7. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    8. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    9. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    10. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    11. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    12. Paccagnini, Alessia, 2016. "The macroeconomic determinants of the US term structure during the Great Moderation," Economic Modelling, Elsevier, vol. 52(PA), pages 216-225.
    13. Constantino Hevia & Martin Gonzalez‐Rozada & Martin Sola & Fabio Spagnolo, 2015. "Estimating and Forecasting the Yield Curve Using A Markov Switching Dynamic Nelson and Siegel Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(6), pages 987-1009, September.
    14. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    15. Guidolin, Massimo & Pedio, Manuela, 2019. "Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    16. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    17. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Siyu Bie & Francis X. Diebold & Jingyu He & Junye Li, 2024. "Machine Learning and the Yield Curve: Tree-Based Macroeconomic Regime Switching," Papers 2408.12863, arXiv.org.
    19. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
    20. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.09874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.