IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.08892.html
   My bibliography  Save this paper

Spurious Default Probability Projections in Credit Risk Stress Testing Models

Author

Listed:
  • Bernd Engelmann

Abstract

Credit risk stress testing has become an important risk management device which is used both by banks internally and by regulators. Stress testing is complex because it essentially means projecting a bank's full balance sheet conditional on a macroeconomic scenario over multiple years. Part of the complexity stems from using a wide range of model parameters for, e.g., rating transition, write-off rules, prepayment, or origination of new loans. A typical parameterization of a credit risk stress test model specifies parameters linked to an average economic, the through-the-cycle, state. These parameters are transformed to a stressed state by utilizing a macroeconomic model. It will be shown that the model parameterization implies a unique through-the-cycle portfolio which is unrelated to a bank's current portfolio. Independent of the stress imposed to the model, the current portfolio will have a tendency to propagate towards the through-the-cycle portfolio. This could create unwanted spurious effects on projected portfolio default rates especially when a stress test model's parameterization is inconsistent with a bank's current portfolio.

Suggested Citation

  • Bernd Engelmann, 2024. "Spurious Default Probability Projections in Credit Risk Stress Testing Models," Papers 2401.08892, arXiv.org.
  • Handle: RePEc:arx:papers:2401.08892
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.08892
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    2. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    3. Duellmann, Klaus & Küll, Jonathan & Kunisch, Michael, 2010. "Estimating asset correlations from stock prices or default rates--Which method is superior?," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2341-2357, November.
    4. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varotto, Simone, 2012. "Stress testing credit risk: The Great Depression scenario," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3133-3149.
    2. Carling, Kenneth & Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2007. "Corporate credit risk modeling and the macroeconomy," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 845-868, March.
    3. G'eraldine Bouveret & Jean-Franc{c}ois Chassagneux & Smail Ibbou & Antoine Jacquier & Lionel Sopgoui, 2023. "Propagation of a carbon price in a credit portfolio through macroeconomic factors," Papers 2307.12695, arXiv.org, revised Apr 2024.
    4. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2015. "Sample dependency during unconditional credit capital estimation," Finance Research Letters, Elsevier, vol. 15(C), pages 175-186.
    5. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2015. "Capital cyclicality, conditional coverage and long-term capital assessment," Finance Research Letters, Elsevier, vol. 15(C), pages 246-256.
    6. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2016. "Efficient estimation of unconditional capital by Monte Carlo simulation," Finance Research Letters, Elsevier, vol. 16(C), pages 75-84.
    7. Alejandro Ferrer Pérez & José Casals Carro & Sonia Sotoca López, 2014. "A new approach to the unconditional measurement of default risk," Documentos de Trabajo del ICAE 2014-11, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    8. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    9. Collet, Jerome & Ielpo, Florian, 2018. "Sector spillovers in credit markets," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 267-278.
    10. Virolainen, Kimmo, 2004. "Macro stress testing with a macroeconomic credit risk model for Finland," Research Discussion Papers 18/2004, Bank of Finland.
    11. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    12. Wang, Zheqi & Crook, Jonathan & Andreeva, Galina, 2020. "Reducing estimation risk using a Bayesian posterior distribution approach: Application to stress testing mortgage loan default," European Journal of Operational Research, Elsevier, vol. 287(2), pages 725-738.
    13. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2015. "Many a little makes a mickle: Macro portfolio stress test for small and medium-sized German banks," Discussion Papers 23/2015, Deutsche Bundesbank.
    14. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    15. Anisa Caja & Frédéric Planchet, 2014. "Modeling Cycle Dependence in Credit Insurance," Risks, MDPI, vol. 2(1), pages 1-15, March.
    16. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    17. de Wet, Albertus H. & van Eyden, Reneé & Gupta, Rangan, 2009. "Linking global economic dynamics to a South African-specific credit risk correlation model," Economic Modelling, Elsevier, vol. 26(5), pages 1000-1011, September.
    18. Carling, Kenneth & Rönnegård, Lars & Roszbach, Kasper, 2004. "Is Firm Interdependence within Industries Important for Portfolio Credit Risk?," Working Paper Series 168, Sveriges Riksbank (Central Bank of Sweden).
    19. repec:zbw:bofrdp:2004_018 is not listed on IDEAS
    20. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    21. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.08892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.