IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.00603.html
   My bibliography  Save this paper

Intraday Trading Algorithm for Predicting Cryptocurrency Price Movements Using Twitter Big Data Analysis

Author

Listed:
  • Vahidin Jeleskovic
  • Stephen Mackay

Abstract

Cryptocurrencies have emerged as a novel financial asset garnering significant attention in recent years. A defining characteristic of these digital currencies is their pronounced short-term market volatility, primarily influenced by widespread sentiment polarization, particularly on social media platforms such as Twitter. Recent research has underscored the correlation between sentiment expressed in various networks and the price dynamics of cryptocurrencies. This study delves into the 15-minute impact of informative tweets disseminated through foundation channels on trader behavior, with a focus on potential outcomes related to sentiment polarization. The primary objective is to identify factors that can predict positive price movements and potentially be leveraged through a trading algorithm. To accomplish this objective, we conduct a conditional examination of return and excess return rates within the 15 minutes following tweet publication. The empirical findings reveal statistically significant increases in return rates, particularly within the initial three minutes following tweet publication. Notably, adverse effects resulting from the messages were not observed. Surprisingly, sentiments were found to have no discerni-ble impact on cryptocurrency price movements. Our analysis further identifies that inves-tors are primarily influenced by the quality of tweet content, as reflected in the choice of words and tweet volume. While the basic trading algorithm presented in this study does yield some benefits within the 15-minute timeframe, these benefits are not statistically significant. Nevertheless, it serves as a foundational framework for potential enhance-ments and further investigations.

Suggested Citation

  • Vahidin Jeleskovic & Stephen Mackay, 2023. "Intraday Trading Algorithm for Predicting Cryptocurrency Price Movements Using Twitter Big Data Analysis," Papers 2401.00603, arXiv.org.
  • Handle: RePEc:arx:papers:2401.00603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.00603
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    2. Elendner, Hermann & Trimborn, Simon & Ong, Bobby & Lee, Teik Ming, 2016. "The cross-section of crypto-currencies as financial assets: An overview," SFB 649 Discussion Papers 2016-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Gandal, Neil & Hamrick, JT & Rouhi, Farhang & Mukherjee, Arghya & Feder, Amir & Moore, Tyler & Vasek, Marie, 2018. "The Economics of Cryptocurrency Pump and Dump Schemes," CEPR Discussion Papers 13404, C.E.P.R. Discussion Papers.
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    5. Tesar, Linda L. & Werner, Ingrid M., 1995. "Home bias and high turnover," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 467-492, August.
    6. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    7. David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    2. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    3. Julián A. Parra & Carlos Arango - Joaquín Bernal & José E. Gómez - Javier Gómez & Carlos León - Clara Machado & Daniel Osorio - Daniel Rojas & Nicolás Suárez - Eduardo Yanquen, 2019. "Criptoactivos: análisis y revisión de literatura," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, issue 92, pages 1-37, November.
    4. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    5. Charfeddine, Lanouar & Benlagha, Noureddine & Maouchi, Youcef, 2020. "Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors," Economic Modelling, Elsevier, vol. 85(C), pages 198-217.
    6. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    7. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    8. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    9. Fathin Faizah Said & Raja Solan Somasuntharam & Mohd Ridzwan Yaakub & Tamat Sarmidi, 2023. "Impact of Google searches and social media on digital assets’ volatility," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    10. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    11. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    12. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    13. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean-Michel & Schweizer, Denis, 2023. "Interactions between investors’ fear and greed sentiment and Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    14. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    15. Pedro Bação & António Portugal Duarte & Helder Sebastião & Srdjan Redzepagic, 2018. "Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 65(2), pages 97-117, June.
    16. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    17. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    18. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    19. Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
    20. Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.00603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.