IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.02943.html
   My bibliography  Save this paper

Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning

Author

Listed:
  • An Chen
  • Giorgio Ferrari
  • Shihao Zhu

Abstract

This paper investigates the consumption and investment decisions of an individual facing uncertain lifespan and stochastic labor income within a Black-Scholes market framework. A key aspect of our study involves the agent's option to choose when to acquire life insurance for bequest purposes. We examine two scenarios: one with a fixed bequest amount and another with a controlled bequest amount. Applying duality theory and addressing free-boundary problems, we analytically solve both cases, and provide explicit expressions for value functions and optimal strategies in both cases. In the first scenario, where the bequest amount is fixed, distinct outcomes emerge based on different levels of risk aversion parameter $\gamma$: (i) the optimal time for life insurance purchase occurs when the agent's wealth surpasses a critical threshold if $\gamma \in (0,1)$, or (ii) life insurance should be acquired immediately if $\gamma>1$. In contrast, in the second scenario with a controlled bequest amount, regardless of $\gamma$ values, immediate life insurance purchase proves to be optimal.

Suggested Citation

  • An Chen & Giorgio Ferrari & Shihao Zhu, 2023. "Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning," Papers 2312.02943, arXiv.org.
  • Handle: RePEc:arx:papers:2312.02943
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.02943
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Chang-Chih & Chang, Chia-Chien & Sun, Edward W. & Yu, Min-Teh, 2022. "Optimal decision of dynamic wealth allocation with life insurance for mitigating health risk under market incompleteness," European Journal of Operational Research, Elsevier, vol. 300(2), pages 727-742.
    2. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Kyoung Jin Choi & Gyoocheol Shim, 2006. "Disutility, Optimal Retirement, And Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 443-467, April.
    5. Dybvig, Philip H. & Liu, Hong, 2010. "Lifetime consumption and investment: Retirement and constrained borrowing," Journal of Economic Theory, Elsevier, vol. 145(3), pages 885-907, May.
    6. Farhi, Emmanuel & Panageas, Stavros, 2007. "Saving and investing for early retirement: A theoretical analysis," Journal of Financial Economics, Elsevier, vol. 83(1), pages 87-121, January.
    7. Erhan Bayraktar & Virginia Young, 2013. "Life Insurance Purchasing to Maximize Utility of Household Consumption," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(2), pages 114-135.
    8. Campbell, Ritchie A, 1980. "The Demand for Life Insurance: An Application of the Economics of Uncertainty," Journal of Finance, American Finance Association, vol. 35(5), pages 1155-1172, December.
    9. Kyoung Jin Choi & Gyoocheol Shim & Yong Hyun Shin, 2008. "Optimal Portfolio, Consumption‐Leisure And Retirement Choice Problem With Ces Utility," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 445-472, July.
    10. Donghui Li & Fariborz Moshirian & Pascal Nguyen & Timothy Wee, 2007. "The Demand for Life Insurance in OECD Countries," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(3), pages 637-652, September.
    11. Ioannis Karatzas & John P. Lehoczky & Suresh P. Sethi & Steven E. Shreve, 1986. "Explicit Solution of a General Consumption/Investment Problem," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 261-294, May.
    12. Chen, An & Hentschel, Felix & Steffensen, Mogens, 2021. "On retirement time decision making," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 107-129.
    13. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    14. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    15. Huang, Huaxiong & Milevsky, Moshe A., 2008. "Portfolio choice and mortality-contingent claims: The general HARA case," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2444-2452, November.
    16. Ioannis Karatzas & (*), S. G. Kou, 1998. "Hedging American contingent claims with constrained portfolios," Finance and Stochastics, Springer, vol. 2(3), pages 215-258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, An & Ferrari, Giorgio & Zhu, Shihao, 2023. "Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning," Center for Mathematical Economics Working Papers 684, Center for Mathematical Economics, Bielefeld University.
    2. Bäuerle Nicole & Chen An, 2019. "Optimal retirement planning under partial information," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 37-55, December.
    3. Zhou Yang & Hyeng Keun Koo, 2018. "Optimal Consumption and Portfolio Selection with Early Retirement Option," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1378-1404, November.
    4. Chen, An & Hentschel, Felix & Steffensen, Mogens, 2021. "On retirement time decision making," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 107-129.
    5. Giorgio Ferrari & Shihao Zhu, 2023. "Optimal Retirement Choice under Age-dependent Force of Mortality," Papers 2311.12169, arXiv.org.
    6. Kwak, Minsuk & Shin, Yong Hyun & Choi, U Jin, 2011. "Optimal investment and consumption decision of a family with life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 176-188, March.
    7. de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
    8. Choi, Kyoung Jin & Jeon, Junkee & Koo, Hyeng Keun, 2022. "Intertemporal preference with loss aversion: Consumption and risk-attitude," Journal of Economic Theory, Elsevier, vol. 200(C).
    9. Park, Seyoung, 2020. "Verification theorems for models of optimal consumption and investment with annuitization," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 36-44.
    10. Barucci, Emilio & Biffis, Enrico & Marazzina, Daniele, 2023. "Health insurance, portfolio choice, and retirement incentives," European Journal of Operational Research, Elsevier, vol. 307(2), pages 910-921.
    11. Chae, Jiwon & Jang, Bong-Gyu & Park, Seyoung, 2023. "Analytic approach for models of optimal retirement with disability risk," Mathematical Social Sciences, Elsevier, vol. 126(C), pages 68-75.
    12. Junkee Jeon & Hyeng Keun Koo & Yong Hyun Shin & Zhou Yang, 2021. "An Integral Equation Representation for Optimal Retirement Strategies in Portfolio Selection Problem," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 885-914, October.
    13. Kyoung Jin Choi & Gyoocheol Shim & Yong Hyun Shin, 2008. "Optimal Portfolio, Consumption‐Leisure And Retirement Choice Problem With Ces Utility," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 445-472, July.
    14. Ferrari, Giorgio & Zhu, Shihao, 2023. "Optimal Retirement Choice under Age-dependent Force of Mortality," Center for Mathematical Economics Working Papers 683, Center for Mathematical Economics, Bielefeld University.
    15. Park, Seyoung, 2015. "A generalization of Yaari’s result on annuitization with optimal retirement," Economics Letters, Elsevier, vol. 137(C), pages 17-20.
    16. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    17. Chen, Shumin & Luo, Dan & Yao, Haixiang, 2024. "Optimal investor life cycle decisions with time-inconsistent preferences," Journal of Banking & Finance, Elsevier, vol. 161(C).
    18. Jeon, Junkee & Park, Kyunghyun, 2023. "Optimal job switching and retirement decision," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    19. Jeon, Junkee & Park, Kyunghyun, 2020. "Dynamic asset allocation with consumption ratcheting post retirement," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    20. Jarner, Søren Fiig & Kronborg, Morten Tolver, 2016. "Entrance times of random walks: With applications to pension fund modeling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 1-20.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.02943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.