IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.10759.html
   My bibliography  Save this paper

Application Research of Spline Interpolation and ARIMA in the Field of Stock Market Forecasting

Author

Listed:
  • Xitai Yu

Abstract

The ARIMA (Autoregressive Integrated Moving Average model) has extensive applications in the field of time series forecasting. However, the predictive performance of the ARIMA model is limited when dealing with data gaps or significant noise. Based on previous research, we have found that cubic spline interpolation performs well in capturing the smooth changes of stock price curves, especially when the market trends are relatively stable. Therefore, this paper integrates the two approaches by taking the time series data in stock trading as an example, establishes a time series forecasting model based on cubic spline interpolation and ARIMA. Through validation, the model has demonstrated certain guidance and reference value for short-term time series forecasting.

Suggested Citation

  • Xitai Yu, 2023. "Application Research of Spline Interpolation and ARIMA in the Field of Stock Market Forecasting," Papers 2311.10759, arXiv.org.
  • Handle: RePEc:arx:papers:2311.10759
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.10759
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.10759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.