IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.10756.html
   My bibliography  Save this paper

Earnings Prediction Using Recurrent Neural Networks

Author

Listed:
  • Moritz Scherrmann
  • Ralf Elsas

Abstract

Firm disclosures about future prospects are crucial for corporate valuation and compliance with global regulations, such as the EU's MAR and the US's SEC Rule 10b-5 and RegFD. To comply with disclosure obligations, issuers must identify nonpublic information with potential material impact on security prices as only new, relevant and unexpected information materially affects prices in efficient markets. Financial analysts, assumed to represent public knowledge on firms' earnings prospects, face limitations in offering comprehensive coverage and unbiased estimates. This study develops a neural network to forecast future firm earnings, using four decades of financial data, addressing analysts' coverage gaps and potentially revealing hidden insights. The model avoids selectivity and survivorship biases as it allows for missing data. Furthermore, the model is able to produce both fiscal-year-end and quarterly earnings predictions. Its performance surpasses benchmark models from the academic literature by a wide margin and outperforms analysts' forecasts for fiscal-year-end earnings predictions.

Suggested Citation

  • Moritz Scherrmann & Ralf Elsas, 2023. "Earnings Prediction Using Recurrent Neural Networks," Papers 2311.10756, arXiv.org.
  • Handle: RePEc:arx:papers:2311.10756
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.10756
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 2000. "Forecasting Profitability and Earnings," The Journal of Business, University of Chicago Press, vol. 73(2), pages 161-175, April.
    2. Abarbanell, Jeffery S., 1991. "Do analysts' earnings forecasts incorporate information in prior stock price changes?," Journal of Accounting and Economics, Elsevier, vol. 14(2), pages 147-165, June.
    3. Hou, Kewei & van Dijk, Mathijs A. & Zhang, Yinglei, 2012. "The implied cost of capital: A new approach," Journal of Accounting and Economics, Elsevier, vol. 53(3), pages 504-526.
    4. Vitor Azevedo & Patrick Bielstein & Manuel Gerhart, 2021. "Earnings forecasts: the case for combining analysts’ estimates with a cross-sectional model," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 545-579, February.
    5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    6. Lewellen, Jonathan & Resutek, Robert J., 2019. "Why do accruals predict earnings?," Journal of Accounting and Economics, Elsevier, vol. 67(2), pages 336-356.
    7. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    8. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richardson, Scott & Tuna, Irem & Wysocki, Peter, 2010. "Accounting anomalies and fundamental analysis: A review of recent research advances," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 410-454, December.
    2. Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
    3. S. P. Kothari & Charles Wasley, 2019. "Commemorating the 50‐Year Anniversary of Ball and Brown (1968): The Evolution of Capital Market Research over the Past 50 Years," Journal of Accounting Research, Wiley Blackwell, vol. 57(5), pages 1117-1159, December.
    4. Azevedo, Vitor, 2023. "Analysts’ underreaction and momentum strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    5. Heinrichs, Nicolas & Hess, Dieter & Homburg, Carsten & Lorenz, Michael & Sievers, Soenke, 2011. "Extended dividend, cash flow and residual income valuation models: Accounting for deviations from ideal conditions," CFR Working Papers 11-11, University of Cologne, Centre for Financial Research (CFR).
    6. X. Frank Zhang, 2006. "Information Uncertainty and Analyst Forecast Behavior," Contemporary Accounting Research, John Wiley & Sons, vol. 23(2), pages 565-590, June.
    7. So, Eric C., 2013. "A new approach to predicting analyst forecast errors: Do investors overweight analyst forecasts?," Journal of Financial Economics, Elsevier, vol. 108(3), pages 615-640.
    8. Zana Grigaliuniene, 2013. "Time-Series Models Forecasting Performance In The Baltic Stock Market," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 4(1).
    9. Paugam, Luc, 2011. "Valorisation et reporting du goodwill : enjeux théoriques et empiriques," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/8007 edited by Casta, Jean-François.
    10. Bradley Ewing & Mark Thompson, 2007. "Asymmetric mean reversion in corporate profits," Applied Economics Letters, Taylor & Francis Journals, vol. 14(13), pages 935-938.
    11. Gikas Hardouvelis & George Papanastasopoulos & Dimitrios D. Thomakos & Tao Wang, 2007. "Accruals, Net Stock Issues and Value-Glamour Anomalies: New Evidence on their Relation," Working Paper series 47_07, Rimini Centre for Economic Analysis.
    12. Jonathan A. Milian, 2015. "Unsophisticated Arbitrageurs and Market Efficiency: Overreacting to a History of Underreaction?," Journal of Accounting Research, Wiley Blackwell, vol. 53(1), pages 175-220, March.
    13. David Hirshleifer & Kewei Hou & Siew Hong Teoh, 2012. "The Accrual Anomaly: Risk or Mispricing?," Management Science, INFORMS, vol. 58(2), pages 320-335, February.
    14. Fernando Rubio, 2005. "Estrategias Cuantitativas De Valor Y Retornos Por Accion De Largo," Finance 0503029, University Library of Munich, Germany.
    15. repec:grz:wpsses:2020-04 is not listed on IDEAS
    16. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    17. Lu Zhang, 2019. "Q-factors and Investment CAPM," NBER Working Papers 26538, National Bureau of Economic Research, Inc.
    18. Mundt, Philipp & Alfarano, Simone & Milaković, Mishael, 2020. "Exploiting ergodicity in forecasts of corporate profitability," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    19. Kjell Bjørn Nordal & Randi Næs, 2012. "Mean Reversion in Profitability for Non†listed Firms," European Financial Management, European Financial Management Association, vol. 18(5), pages 929-949, November.
    20. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    21. Dreher, Sandra & Eichfelder, Sebastian & Noth, Felix, 2017. "Predicting earnings and cash flows: The information content of losses and tax loss carryforwards," IWH Discussion Papers 30/2017, Halle Institute for Economic Research (IWH).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.10756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.