IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.10738.html
   My bibliography  Save this paper

Approximation of supply curves

Author

Listed:
  • Andres M. Alonso
  • Zehang Li

Abstract

In this note, we illustrate the computation of the approximation of the supply curves using a one-step basis. We derive the expression for the L2 approximation and propose a procedure for the selection of nodes of the approximation. We illustrate the use of this approach with three large sets of bid curves from European electricity markets.

Suggested Citation

  • Andres M. Alonso & Zehang Li, 2023. "Approximation of supply curves," Papers 2311.10738, arXiv.org.
  • Handle: RePEc:arx:papers:2311.10738
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.10738
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
    2. Menezes, Flavio M. & Quiggin, John, 2012. "More competitors or more competition? Market concentration and the intensity of competition," Economics Letters, Elsevier, vol. 117(3), pages 712-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio M. Menezes & Jorge Pereira, 2023. "Imperfect competition, emissions tax and the Porter hypothesis," Australian Institute for Business and Economics DP022023, School of Economics, University of Queensland, Australia.
    2. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    3. Tan, Yafei & Zhu, Zhaohui, 2022. "The effect of ESG rating events on corporate green innovation in China: The mediating role of financial constraints and managers' environmental awareness," Technology in Society, Elsevier, vol. 68(C).
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    6. Flavio M. Menezes & John Quiggin, 2023. "Competition in supply functions and conjectural variations: a unified solution," Australian Institute for Business and Economics DP012023, School of Economics, University of Queensland, Australia.
    7. Delbono, Flavio & Lambertini, Luca, 2016. "Ranking Bertrand, Cournot and supply function equilibria in oligopoly," Energy Economics, Elsevier, vol. 60(C), pages 73-78.
    8. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    9. Mestre, Guillermo & Sánchez-Úbeda, Eugenio F. & Muñoz San Roque, Antonio & Alonso, Estrella, 2022. "The arithmetic of stepwise offer curves," Energy, Elsevier, vol. 239(PE).
    10. Tina Kao & Flavio Menezes & John Quiggin, 2014. "Optimal access regulation with downstream competition," Journal of Regulatory Economics, Springer, vol. 45(1), pages 75-93, February.
    11. Sergei Kulakov, 2019. "X-model: further development and possible modifications," Papers 1907.09206, arXiv.org.
    12. Marc Escrihuela-Villar, 2016. "On the price effects of collusion and the number of firms," Economics Bulletin, AccessEcon, vol. 36(3), pages 1694-1704.
    13. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    14. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    15. Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
    16. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    17. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    18. Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
    19. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    20. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.10738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.